Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (1): 43-50    DOI:
论文 Current Issue | Archive | Adv Search |
CA--LBM MODEL FOR THE SIMULATION OF DENDRITIC GROWTH UNDER NATURAL CONVECTION
YANG Chaorong;SUN Dongke;PAN Shiyan;DAI Ting;ZHU Mingfang
Jiangsu Key Laboratory for Advanced Metallic Materials; Southeast University; Nanjing 211189
Cite this article: 

YANG Chaorong SUN Dongke PAN Shiyan DAI Ting ZHU Mingfang. CA--LBM MODEL FOR THE SIMULATION OF DENDRITIC GROWTH UNDER NATURAL CONVECTION. Acta Metall Sin, 2009, 45(1): 43-50.

Download:  PDF(1173KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A two-dimensional (2-D) model coupling cellular automaton-lattice Boltzmann method (CA-LBM) was developed for the simulation of dendritic growth in the presence of natural convection. The present model adopts the CA approach for the simulation of dendritic growth and the LBM for the numerical solution of flow dynamics as well as the species and heat transports controlled by both diffusion and convection. The validation of the LBM was performed by testing the calculated natural convection in a square cavity. The CA-LBM model was applied to simulate single and multi-dendritic growth in alloys under natural convection. The simulated single dendritic steady-state growth data of the upstream tip can be compared well with the analytical predictions. It is found that the dendritic growth is obviously influenced by natural convection.

Key words:  dendritic growth      natural convection      cellular automaton      lattice Boltzmann method      numerical simulation     
Received:  19 June 2008     
ZTFLH: 

TG111.4

 
Fund: 

Supported by National Natural Science Foundation of China (No.50671025), Natural Science Foundation of Jiangsu Province (No.{\footnotesize\it BK2006105}) and China Specialized Research Fund for the Doctoral  Program of Higher Education (No.20070286021)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I1/43

[1] Lan C W, Shih C J. Phys Rev, 2004; 69E: 031601
[2] T¨onhardt R, Amberg G. Phys Rev, 2000; 62E: 828
[3] Zhu M F, Lee S Y, Hong C P. Phys Rev, 2004; 69E: 061610
[4] Zhu M F, Dai T, Lee C Y, Hong C P. Sci China, 2005; 35E: 673
(朱鸣芳, 戴挺, 李成允, 洪俊杓. 中国科学, 2005; 35E: 673)
[5] Lu Y, Beckermann C, Ramirez J C. J Cryst Growth, 2005; 280: 320
[6] Al–Rawahi N, Tryggvason G. J Comput Phys, 2002; 180: 471
[7] Zhang P W, Li D M, Li R. Appl Math Model, 2007; 31: 971
[8] Kang X H, Du Q, Li D Z, Li Y Y. Acta Metall Sin, 2004; 40: 452
(康秀红, 杜强, 李殿中, 李依依. 金属学报, 2004; 40: 452)
[9] Guo Z L, Zheng C G, Li Q. The Lattice Boltzmann Method on Hydrokinetics. Wuhan: Hubei Science and Technology Press, 2002: 53
(郭照立, 郑楚光, 李青. 流体动力学的格子Boltzmann 方法. 武汉: 湖北科学技术出版社, 2002: 53)
[10] Raabe D. Modell Simul Sci Eng, 2004; 12: 13
[11] Miller W, Rasin I, Pimentel F. J Cryst Growth, 2004; 266: 283
[12] Miller W, Succi S, Mansutti D. Phys Rev Lett, 2001; 86: 3578
[13] Medvedev D, Fischaleck T, Kassner K. J Cryst Growth, 2007; 303: 69
[14] Zhang X J, Shen H F. Chin J Mech Eng, 2006; 42(9): 154
(张小军, 沈厚发. 机械工程学报, 2006; 42(9): 154)
[15] Huang J L, Chen L L. In: Jin J Z, Yao S, Hao H, Wang T M, eds., Proc Modeling of Casting and Solidification Processes (VII), Dalian: Dalian University of Technology Press, 2007: 123
[16] Yu J, Xu Q Y, Cui K, Liu B C. Acta Metall Sin, 2007; 43:731
(于靖, 许庆彦, 崔锴, 柳百成. 金属学报, 2007;  43: 731)
[17] Li Q, Li D Z, Qian B N. Acta Metall Sin, 2004; 40: 1215
(李强, 李殿中, 钱百年. 金属学报, 2004; 40: 1215)
[18] Shan B W, Lin X, Lei W, Huang W D. Adv Mater Res, 2007; 26: 957
[19] Guo Z L, Zheng C G, Shi B C. Phys Rev, 2002; 65E: 046308
[20] Qian Y H, D′Humieres D, Lallemand P. Europhys Lett, 1992; 17: 479
[21] Deng B, Shi B C, Wang G C. Chin Phys Lett, 2005, 22: 267
[22] Nie D M, Lin J Z. Chin J Comput Phys, 2004; 21: 21
(聂德明, 林建忠. 计算物理, 2004; 21: 21)
[23] Guo Z L, Zheng C G, Shi B C. Chin Phys, 2002; 4: 366
[24] Zhu M F, Stefanescu D M. Acta Mater, 2007; 55: 1741
[25] Cantor B, Vogel A. J Cryst Growth, 1977; 44: 109
[26] Li Q, Beckermann C. J Cryst Growth, 2002; 236: 482
[27] Lipton J, Glicksman M E, Kurz W. Mater Sci Eng, 1984; 65: 57
[28] Kuznik F, Vareilles J, Rusaouen G, Krauss G. Int J Heat Fluid Flow, 2007; 28: 862
[29] de Vahl Davis G. Int J Numer Methods Fluids, 1983; 3: 249

[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[7] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[8] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[9] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[10] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[11] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[12] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[13] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
[14] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[15] Mingfang ZHU, Like XING, Hui FANG, Qingyu ZHANG, Qianyu TANG, Shiyan PAN. Progresses in Dendrite Coarsening During Solidification of Alloys[J]. 金属学报, 2018, 54(5): 789-800.
No Suggested Reading articles found!