Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (8): 937-942     DOI:
Research Articles Current Issue | Archive | Adv Search |
ATOMISTIC SIMULATION OF NANOSTRUCTURE FOR MACHINING-TENSION PROCESS
;;;;
哈尔滨工业大学
Cite this article: 

. ATOMISTIC SIMULATION OF NANOSTRUCTURE FOR MACHINING-TENSION PROCESS. Acta Metall Sin, 2008, 44(8): 937-942 .

Download:  PDF(4780KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Method of hybrid machining-tension simulations is proposed and applied to Cu (111) plane nanostructure basing on Molecular dynamics. The results show that atoms at frontage of and under tool deviate from their initial positions and form deformation zone in nanostructure. Dislocations only propagate in surface and subsurface when scratching depths are shallow, and some dislocations form dislocation loops as there exists stress gradient near tool. The number of residual defects increase and Order Degree of crystal structure decrease as scratching depths increase. There exist high residual stress in subsurface, especially near the position where tool withdraw nanostructure. After machining, tensile loads are applied to two ends of nanostructure. The response of initial loaded stage is elastic as a whole, while the stress-strain curves show local decrease as residual stress and defects from machining process result in movement of some atoms and onset of dislocations. The Yang's Modulus and yielding stress decrease as scratching depths increase. The initial plastic deformation of machined nanostructure are determined from dislocations slip and stacking faults, and conjugate slip planes ((1 1) and ( 1) slip planes) are formed at the two side of scratching groove. Dislocation slip results in the decreasing of stress, while pileup of dislocations and the forming of new slip plane result in the increasing of stress. As a result, the stress-strain curves decrease step by step. Order degree of nanostructure for first yielding and strain at 0.8 decreases as scratching depths increase, while Order degree of nanostructure for small scratching depths at the strain of 0.8 increase comparing to that of 0.045.
Key words:  Molecular dynamics      machining      tension      dislocation      residual stress      nanostructure      
Received:  08 November 2007     
ZTFLH:  TG146.4  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I8/937

[1]Hoover W G,De Groot A J,Hoover C G,Stowers I F. Phys Rev,1990;42A:5844
[2]Shimada S,Ikawa N,Ohmori G,Tanaka H,Vchikoshi J. Ann CIRP,1992;41:117
[3]Inamura T,Takezawa N,Kumaki Y,Ikawa N.Ann CIRP, 1993,42:79
[4]Komanduri R,Chandrasekaran N,Raff L M.Wear,2000; 240:113
[5]Chandrasekaran N,NooriKhajavi A,Raff L M,Koman- duri R.Philos Mag,1998;77B:7
[6]Komanduri R,Chandrasekaran N,Raff L M.Phys Rev, 2000;61B:14007
[7]Jun S,Lee Y M,Kim S Y,Im S Y.Nanotechnology,2004; 15:1169
[8]Mulliah D,Kenny S D,Smith R.Phys Rev,2004;69B: 205407
[9]Cho M H,Kim S J,Lim D S,Jang H.Wear,2005;259 139
[10]Koh S J A,Lee H P,Lu C,Cheng Q H.Phys Rev,2005; 72B:085414
[11]Deshpande V.S,Needleman A,Van der Giessen E.Mater Sci Eng,2005;A400:401154
[12]Chen D L,Chen T C.Nanotechnology,2005;16:2972
[13]Liang H Y,Ni X G,Wang X X.Acta Metall Sin,2001;37: 83 (梁海弋,倪向贵,王秀喜.金属学报,2001;37:833)
[14]Ju S P,Lin J S,Lee W J.Nanotechnology,2004;15:1221
[15]Wu H A,Wang X X,Ni X G,Wang Y.Acta Metall Sin, 2002;38:1219 (吴恒安,王秀喜,倪向贵,王宇.金属学报,2002;38:1219)
[16]Wu H A,Wang X X,Liang H Y,Liu G Y.Acta Metall Sin,2002;38:903 (吴恒安,王秀喜,梁海弋,刘光勇.金属学报,2002;38:903)
[17]Heino P,Hakkinen H,Kaski K.Phys Rev,1998;58B:641
[18]Chang W J.Microelectron Eng,2003;65:239
[19]Potirniche G P,Horstemeyer M F,Wagner G J,Gullett P M.Int J Plast,2006;22:257
[20]Li M,Chu W Y,Gao K W,Su Y J,Qiao L J.Acta Metall Sin,2004;40:449 (李明,褚武扬,高克玮,宿彦京,乔利杰.金属学报,2004;40:449)
[21]Abraham F F,Walkup R,Gao H,Duchaineau M,de La Rubia T D,Seager M.PNAS,2002;99:5783
[22]Doyama M,Kogure Y,Nozaki T,Kato Y.Phys Res,2003; 202B:64
[23]Liang Y C,Chen J X,Chen M J,Tang Y L,Bai Q S.Chin J Chem Phys,2007;20:649
[24]Ianmura T,Takezawa N,Taniguchi N.Ann CIRP,1992; 41:121
[25]Johnson R A.Phys Rev,1988;37B:3924
[26]Johnson R A.Phys Rev,1989;39B:12554
[27]Rafii-Tabar H,Chirazi A.Phys Rep,2002;365:145
[28]Nose S A.J Chem Phys,1984;81:511
[29]Hoover W G.Phys Rev,1985;31A:1695
[30]Zimmerman J A,Kelchner C L,Klein P A,Hamilton J C, Foiles S M.Phys Rev Lett,2001;87:165507
[1] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[5] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[6] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[7] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[8] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[9] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[10] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[11] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[12] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[13] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[14] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[15] ZHANG Xinfang, XIANG Siqi, YI Kun, GUO Jingdong. Controlling the Residual Stress in Metallic Solids by Pulsed Electric Current[J]. 金属学报, 2022, 58(5): 581-598.
No Suggested Reading articles found!