Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (7): 848-852     DOI:
Research Articles Current Issue | Archive | Adv Search |
Finite Element Simulation for Welding Residual Stress and Creep Damage of Welded Joint
Guo-Dong ZHANG
南京工业大学
Cite this article: 

Guo-Dong ZHANG. Finite Element Simulation for Welding Residual Stress and Creep Damage of Welded Joint. Acta Metall Sin, 2008, 44(7): 848-852 .

Download:  PDF(1737KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A coupling calculation method for welding residual and creep damage has been developed by ABAQUS finite element code and its user subroutine UMAT. According to this method, the effect of welding residual stress for Cr5Mo steel welded joint on creep damage was simulated at high temperature. At the same time the creep damage without welding residual stress was compared with that under the consideration of welding residual stress. The research results show that the maximum residual stress all concentrate in weld metal (WM) and heat-affected zone (HAZ). And the axial and hoop stress is higher than radial stress. At high temperature, although the welding residual stress is much higher at initial stage and the residual stress is relaxed in a short time, the welded joint creep damage is greatly influenced by the residual stress. The distribution of creep damage is same as the distribution of welding residual stress. The presented work provides the probability for the high temperature strength design and life assessment of high temperature component.
Key words:  welding residual stress      creep damage      stress relaxation      finite element simulation      
Received:  26 September 2007     
ZTFLH:  TG111.8  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I7/848

[1]Hertzman S,Sandstrom R,Wale J.High Temp Technol, 1987;5(1):33
[2]Lundin C D,Khan K K,Yang D,Zieke W.Weld Res Counc Bull,1990;354:1
[3]Viswanathan R,Foulds J R.ASME Pressure Vessels Pip Div Publ PVP,1995;303:187
[4]Hyde T H,Sun W,Williams J A.Int J Press Vessels Pip- ing,2002;79:799
[5]Hyde T H,Becket A A,Song Y,Sun W.Comput Mater Sci,2006;35:35
[6]Hyde T H,Sun W,Becket A A,Williams J A.Int J Press Vessels Pip,2004;81:1
[7]Hyde T H,Sun W.Int J Press Vessels Pip,2002;79:331
[8]Gong J M,Tu S D,Ling X,Yu H M.J Mater Eng,2000; 11:9 (巩建鸣,涂善东,凌祥,喻红梅.材料工程,2000;11:9)
[9]Kachanov L M.USSUR Div Eng Sci,1958;8:26.
[10]Zhang G D,Zhou C Y.Trans China Weld Inst,2007; 28(8):99 (张国栋,周昌玉.焊接学报,2007;28(8):99)
[11]Qian Z M.Master Dissertation,Nanjing University of Technology,2005 (钱珍梅.南京工业大学硕士学位论文,2005)
[12]Zhang G D,Zhou C Y.Trans China Weld Inst,2006; 27(12):85 (张国栋,周昌玉.焊接学报,2006;27(12):85)
[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[4] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[5] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[6] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[7] JIANG Lin, ZHANG Liang, LIU Zhiquan. Effects of Al Interlayer and Ni(V) Transition Layer on the Welding Residual Stress of Co/Al/Cu Sandwich Target Assembly[J]. 金属学报, 2020, 56(10): 1433-1440.
[8] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[9] Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. 金属学报, 2019, 55(8): 1034-1040.
[10] Wenshu TANG,Junfeng XIAO,Yongjun LI,Jiong ZHANG,Sifeng GAO,Qing NAN. Effect of Re-Heat Rejuvenation Treatment on γ′ Microstructure of Directionally SolidifiedSuperalloy Damaged by Creep[J]. 金属学报, 2019, 55(5): 601-610.
[11] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[12] Shu WEN, Anping DONG, Yanling LU, Guoliang ZHU, Da SHU, Baode SUN. Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting[J]. 金属学报, 2018, 54(3): 393-403.
[13] Weifeng HE, Xiang LI, Xiangfan NIE, Yinghong LI, Sihai LUO. Study on Stability of Residual Stress Induced by Laser Shock Processing in Titanium Alloy Thin-Components[J]. 金属学报, 2018, 54(3): 411-418.
[14] Jialin LIU, Yumin WANG, Guoxing ZHANG, Xu ZHANG, Lina YANG, Qing YANG, Rui YANG. Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension[J]. 金属学报, 2018, 54(12): 1809-1817.
[15] Yu LIU, Shengwei QIN, Xunwei ZUO, Nailu CHEN, Yonghua RONG. Finite Element Simulation and Experimental Verification of Quenching Stress in Fully Through-Hardened Cylinders[J]. 金属学报, 2017, 53(6): 733-742.
No Suggested Reading articles found!