Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (7): 837-842     DOI:
Research Articles Current Issue | Archive | Adv Search |
INVERSE ANALYSIS METHOD TO DETERMINE KINETICS FOR STATIC RECRYSTALLIZATION USING FLOW CURVES
;;
燕山大学机械工程学院
Cite this article: 

. INVERSE ANALYSIS METHOD TO DETERMINE KINETICS FOR STATIC RECRYSTALLIZATION USING FLOW CURVES. Acta Metall Sin, 2008, 44(7): 837-842 .

Download:  PDF(512KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The flow curves are obtained using single-hit and double-hit hot compression tests carried out on Gleeble-3500 thermomechanical simulator. The change of dislocation density during inter-pass is related to the static recrystallization volume fraction, which can be seen as a function of time. Based on the inverse analysis of the flow curves, a new method to estimate the kinetics for static recrystallization is proposed. Conventional approach using image analyses of quenched microstructure to evaluate the kinetics for static recrystallization can be replaced from this method. The proposed method is applied to the hot compression tests of plain carbon steel, and the kinetics for static recrystallization are obtained successfully for some range of deformation at elevated temperature. The results are clarified by comparing them with that reported in the literature. It is confirmed that the proposed method could provide accurate kinetics for static recrystallization with shorter time for experiment and computation.
Key words:  Static recrystallization      flow curves      hot compression      inverse analysis      dislocation density      
Received:  06 December 2007     
ZTFLH:  TG111.7  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I7/837

[1]Kwon O.ISIJ Int,1992;32:350
[2]McQueen H J,Yue S,Ryan N D,Fry E.J Mater Process Technol,1995;53:293
[3]Yoshie A,Morikawa H,Onoe Y,Itoh K.Trans Iron Steel Inst Jpn,1987;27:425
[4]Yanagimoto J,Liu J S.ISIJ Int,1999;39:171
[5]Senuma T,Yada H,Matsumura Y,Futamura T.Tetsu Hagané,1984;70:2112 (濑沼武秀,矢田浩,松村义一,二村忠.铁钢,1984;70:2112)
[6]Chan J W.Acta Metall,1956;4:449
[7]Yanagimoto.J Mod Simul Mater Sci Eng,2002;10:111
[8]Yanagida A,Yanagimoto J.J Mater Process Technol, 2004;151:33
[9]Yoshie A,Fujita T,Fujioka M,Okamoto K,Morikawa H. ISIJ Int,1996;36:474
[10]Poliak E I,Jonas J J.Acta Metall,1996;44:127
[11]Ryan N D,McQueen H J.Can Metall Q,1990;29:147
[12]Mecking H,Kocks U F.Acta Metall,1981;29:1865
[13]Sun W P,Hawbolt E B.ISIJ Int,1997;37:1000
[14]Glowacki M,Kuziak P,Pietrzyk M.J Mater Process Tech- nol,1995;53:159
[15]Cabrera J M,Alomar A,Prado J M,Jonas J J.Metall Mater Trans,1997;28A:2233
[16]Karhausen K,Kopp R.Scand J Metall,1991;20:351
[17]Roberts W,Sandberg A,Siwecki T,Warlefors T.In:Proc Int Conf on HSLA Steels Technology and Applications, Philadelphia,ASM,1983:67
[1] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[2] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[3] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[4] Li ZHOU,Pengfei ZHANG,Quanzhao WANG,Bolü XIAO,Zongyi MA,Tao YU. Multi-Scale Study on the Fracture Behavior of Hot Compression B4C/6061Al Composite[J]. 金属学报, 2019, 55(7): 911-918.
[5] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[6] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[7] Zhipeng WAN, Tao WANG, Yu SUN, Lianxi HU, Zhao LI, Peihuan LI, Yong ZHANG. Dynamic Softening Mechanisms of GH4720Li AlloyDuring Hot Deformation[J]. 金属学报, 2019, 55(2): 213-222.
[8] XIONG Jian,WEI Dean,LU Songjiang,KAN Qianhua,KANG Guozheng,ZHANG Xu. A Three-Dimensional Discrete Dislocation Dynamics Simulation on Micropillar Compression of Single Crystal Copper with Dislocation Density Gradient[J]. 金属学报, 2019, 55(11): 1477-1486.
[9] SUN Chaoyang, HUANG Jie, GUO Ning, YANG Jing. A PHYSICAL CONSTITUTIVE MODEL FOR Fe-22Mn-0.6C TWIP STEEL BASED ON DISLOCATION DENSITY[J]. 金属学报, 2014, 50(9): 1115-1122.
[10] KONG Fantao, CUI Ning, CHEN Yuyong, XIONG Ningning. THE HOT DEFORMATION BEHAVIOR OF Ti-43Al-9V-Y ALLOY[J]. 金属学报, 2013, 49(11): 1363-1368.
[11] HUANG Hongtao Godfrey Andrew LIU Wei TANG Ruihe LIU Qing. EFFECT OF SAMPLE ORIENTATION ON STATIC RECRYSTALLIZATION OF AZ31 MAGNESIUM ALLOY[J]. 金属学报, 2012, 48(8): 915-921.
[12] WANG Ying, ZHANG Ke, GUO Zhenghong, CHEN Nailu, RONG Yonghua. A NEW EFFECT OF RETAINED AUSTENITE ON DUCTILITY ENHANCEMENT OF LOW CARBON Q-P-T STEEL[J]. 金属学报, 2012, 48(6): 641-648.
[13] GANG Jianwei,SHI Binqing, CHEN Rongshi, KE Wei. MICROSTRUCTURE EVOLUTION AND STATIC RECRYSTALLIZATION BEHAVIOR OF HOT-ROLLED Mg-1Zn AND Mg-1Y ALLOYS DURING ISOTHERMAL ANNEALING[J]. 金属学报, 2012, 48(5): 526-533.
[14] WANG Xiaoyong, PAN Tao, WANG Hua, SU Hang,LI Xiangyang, CAO Xingzhong. INVESTIGATION OF THE TOUGHNESS OF LOW CARBON TEMPERED MARTENSITE IN THE SURFACE OF Ni-Cr-Mo-B ULTRA-HEAVY PLATE STEEL[J]. 金属学报, 2012, 48(4): 401-406.
[15] SUN Chaoyang LIU Jinrong LI Rui ZHANG Qingdong. CONSTITUTIVE MODELING FOR ELEVATED TEMPERATURE FLOW BEHAVIOR OF INCOLOY 800H SUPERALLOY[J]. 金属学报, 2011, 47(2): 191-196.
No Suggested Reading articles found!