Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (6): 641-648    DOI: 10.3724/SP.J.1037.2012.00042
论文 Current Issue | Archive | Adv Search |
A NEW EFFECT OF RETAINED AUSTENITE ON DUCTILITY ENHANCEMENT OF LOW CARBON Q-P-T STEEL
WANG Ying, ZHANG Ke, GUO Zhenghong, CHEN Nailu, RONG Yonghua
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
Download:  PDF(4379KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A low carbon Fe-0.25C-1.48Mn-1.20Si-1.51Ni-0.05Nb (mass fraction, %) steel exhibits the combination of high tensile strength and good elongation after treated by a novel quenching-partitioning-tempering (Q-P-T) process. The variation in volume fraction of retained austenite in this steel with strain is measured by XRD, and the deformed twin-type martensite plates are also observed by TEM, from which the transformation induced plasticity (TRIP) effect in this steel is confirmed. Based on the measurement of average dislocation densities in both martensite and retained austenite combined with TEM observation, the effect of dislocation absorption by retained austenite (DARA) is found in the low carbon steel, similar to that in the medium carbon steel proposed recently, from which the generation conditions of DARA effect is proposed, and the mechanism of retained austenite on ductility enhancement of high strength steel is clarified.
Key words:  high strength steel      quenching-partitioning-tempering (Q-P-T) process      average dislocation density      retained austenite      effect of dislocation absorption by retained austenite (DARA)     
Received:  19 January 2012     
ZTFLH: 

TG142

 

Cite this article: 

WANG Ying, ZHANG Ke, GUO Zhenghong, CHEN Nailu, RONG Yonghua. A NEW EFFECT OF RETAINED AUSTENITE ON DUCTILITY ENHANCEMENT OF LOW CARBON Q-P-T STEEL. Acta Metall Sin, 2012, 48(6): 641-648.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00042     OR     https://www.ams.org.cn/EN/Y2012/V48/I6/641

[1] Sakuma Y. In: Baker M A ed.,  Proc Int Conf on Advanced High Strength Sheet Steels for Automotive Applications. Warrendale:Association for Iron-Steel Technology, 2004: 11

[2] Sugimoto K, Kobayshi M, Hashimoto S.  Metall Trans, 1992; 23: 3085

[3] Speer J G, Matlock D K, Cooman B C, Schroch J G.  Acta Mater,2003; 51: 2661

[4] Matlock D K, Brautigam V E, Speer J G.  Mater Sci Forum,2003; 426-432: 1089

[5] Xu Z Y.  Mater Sci Forum, 2007; 561-565: 2283

[6] Wang X D, Zhong N, Rong Y H, Xu Z Y.  J Mater Res, 2009; 24: 261

[7] Zhang K, Xu W Z, Guo Z H, Rong Y H, Wang M Q, Dong H.  Acta Metall Sin,2011; 47: 489

    (张柯, 许为宗, 郭正洪, 戎咏华, 王毛球, 董瀚. 金属学报,2011; 47: 489)

[8] Zhong N, Wang X D, Rong Y H, Wang L.  Mater Sci Eng, 2009; A506: 111

[9] Zhou S, Zhang K, Wang Y, Gu J F, Rong Y H.  Mater Sci Eng,2011; A528: 8006

[10] Zackay V F, Parker E R, Fahr D, Busch R.  ASM Trans Quart,1967; 60: 252

[11] Webster D.  ASM Trans Quart, 1968; 61: 816

[12] Zhang K, Zhang M H, Guo Z H, Chen N L, Rong Y H.  Mater Sci Eng, 2011; A528: 8486

[13] Rong Y H.  Acta Metall Sin, 2011; 47: 1483

     (戎咏华. 金属学报, 2011; 47: 1483)

[14] Koistinen D P, Marburger R E.  Acta Metall, 1959; 7: 59

[15] Fan X.  Metallic X-ray Physics. Beijing: Mechanical Industry Press, 1989: 159

     (范雄. 金属X射线学. 北京: 机械工业出版社, 1989: 159)

[16] Durnin J, Ridal K A.  J Iron Steel Inst, 1968; 1: 60

[17] Heimendahl M V.  Electron Microscopy of Materials: An Introduction. New York: Academic Press, 1980: 185

[18] Woo W, Balogh L, Ungar T, Choo H, Feng Z L. Mater Sci Eng, 2008; A498: 308

[19] Li W, Xu W Z, Wang X D, Rong Y H.  J Alloys Compd, 2009; 474: 546

[20] Stokes A R.  Proc Phys Soc, 1948; 61: 382

[21] Baker R G, Nutting J.  ISI Special Report No. 64.London: The Iron and Steel Institute, 1959: 1

[22] Lu L, Sui M L, Lu K.  Science, 2000; 287: 1463

[23] Wasserbach W.  Philos Mag, 1986; A53: 335

[24] Rhee M, Zbib H M, Hirth J P, Huang H, Rubia T.  Modelling Simul Mater Sci Eng, 1998; 6: 467

[25] Mitchell T E, Spitzig W A.  Acta Metall, 1965; 13: 1169
 
[1] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[2] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[3] Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. 金属学报, 2019, 55(2): 191-201.
[4] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[5] Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. 金属学报, 2018, 54(9): 1245-1252.
[6] Mingyue WEN, Wenchao DONG, Huiyong PANG, Shanping LU. Microstructure and Impact Toughness of Welding Heat-Affected Zones of a Fe-Cr-Ni-Mo High Strength Steel[J]. 金属学报, 2018, 54(4): 501-511.
[7] Jilan YANG, Yuankai JIANG, Jianfeng GU, Zhenghong GUO, Haiyan CHEN. Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel[J]. 金属学报, 2018, 54(1): 21-30.
[8] Qingdong ZHANG,Xiao LIN,Qiang CAO,Xingfu LU,Boyang ZHANG,Shushan HU. Flatness Defect Evolution of Cold-Rolled High Strength Steel Strip During Quenching Process[J]. 金属学报, 2017, 53(4): 385-396.
[9] Long HUANG,Xiangtao DENG,Jia LIU,Zhaodong WANG. Relationship Between Retained Austenite Stability and Cryogenic Impact Toughness in 0.12C-3.0Mn Low Carbon Medium Manganese Steel[J]. 金属学报, 2017, 53(3): 316-324.
[10] Yajun HUI,Hui PAN,Wenyuan LI,Kun LIU,Bin CHEN,Yang CUI. Study on Heating Schedule of 1000 MPa Grade Nb-Ti Microalloyed Ultra-High Strength Steel[J]. 金属学报, 2017, 53(2): 129-139.
[11] Yonghua RONG,Nailu CHEN. The Principle and Mechanism of Enhancement of Both Strength and Ductility of Martensitic Steels by Carbon[J]. 金属学报, 2017, 53(1): 1-9.
[12] Xiaolu GUI,Baoxiang ZHANG,Guhui GAO,Ping ZHAO,Bingzhe BAI,Yuqing WENG. FATIGUE BEHAVIOR OF BAINITE/MARTENSITE MULTIPHASE HIGH STRENGTH STEEL TREATEDBY QUENCHING-PARTITIONING-TEMPERING PROCESS[J]. 金属学报, 2016, 52(9): 1036-1044.
[13] Xiangli FENG,Lei WANG,Yang LIU. STUDY ON MICROSTRUCTURE AND DYNAMIC FRACTURE BEHAVIOR OF Q460 STEEL WELDING JOINTS[J]. 金属学报, 2016, 52(7): 787-796.
[14] Lin FAN,Kangkang DING,Weimin GUO,Penghui ZHANG,Likun XU. EFFECT OF HYDROSTATIC PRESSURE AND PRE-STRESS ON CORROSION BEHAVIOR OF A NEW TYPE Ni-Cr-Mo-V HIGH STRENGTH STEEL[J]. 金属学报, 2016, 52(6): 679-688.
[15] Zhenjia XIE,Chengjia SHANG,Wenhao ZHOU,Binbin WU. EFFECT OF RETAINED AUSTENITE ON DUCTILITY AND TOUGHNESS OF A LOW ALLOYED MULTI-PHASE STEEL[J]. 金属学报, 2016, 52(2): 224-232.
No Suggested Reading articles found!