Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (6): 641-648    DOI: 10.3724/SP.J.1037.2012.00042
论文 Current Issue | Archive | Adv Search |
A NEW EFFECT OF RETAINED AUSTENITE ON DUCTILITY ENHANCEMENT OF LOW CARBON Q-P-T STEEL
WANG Ying, ZHANG Ke, GUO Zhenghong, CHEN Nailu, RONG Yonghua
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
Cite this article: 

WANG Ying, ZHANG Ke, GUO Zhenghong, CHEN Nailu, RONG Yonghua. A NEW EFFECT OF RETAINED AUSTENITE ON DUCTILITY ENHANCEMENT OF LOW CARBON Q-P-T STEEL. Acta Metall Sin, 2012, 48(6): 641-648.

Download:  PDF(4379KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A low carbon Fe-0.25C-1.48Mn-1.20Si-1.51Ni-0.05Nb (mass fraction, %) steel exhibits the combination of high tensile strength and good elongation after treated by a novel quenching-partitioning-tempering (Q-P-T) process. The variation in volume fraction of retained austenite in this steel with strain is measured by XRD, and the deformed twin-type martensite plates are also observed by TEM, from which the transformation induced plasticity (TRIP) effect in this steel is confirmed. Based on the measurement of average dislocation densities in both martensite and retained austenite combined with TEM observation, the effect of dislocation absorption by retained austenite (DARA) is found in the low carbon steel, similar to that in the medium carbon steel proposed recently, from which the generation conditions of DARA effect is proposed, and the mechanism of retained austenite on ductility enhancement of high strength steel is clarified.
Key words:  high strength steel      quenching-partitioning-tempering (Q-P-T) process      average dislocation density      retained austenite      effect of dislocation absorption by retained austenite (DARA)     
Received:  19 January 2012     
ZTFLH: 

TG142

 

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00042     OR     https://www.ams.org.cn/EN/Y2012/V48/I6/641

[1] Sakuma Y. In: Baker M A ed.,  Proc Int Conf on Advanced High Strength Sheet Steels for Automotive Applications. Warrendale:Association for Iron-Steel Technology, 2004: 11

[2] Sugimoto K, Kobayshi M, Hashimoto S.  Metall Trans, 1992; 23: 3085

[3] Speer J G, Matlock D K, Cooman B C, Schroch J G.  Acta Mater,2003; 51: 2661

[4] Matlock D K, Brautigam V E, Speer J G.  Mater Sci Forum,2003; 426-432: 1089

[5] Xu Z Y.  Mater Sci Forum, 2007; 561-565: 2283

[6] Wang X D, Zhong N, Rong Y H, Xu Z Y.  J Mater Res, 2009; 24: 261

[7] Zhang K, Xu W Z, Guo Z H, Rong Y H, Wang M Q, Dong H.  Acta Metall Sin,2011; 47: 489

    (张柯, 许为宗, 郭正洪, 戎咏华, 王毛球, 董瀚. 金属学报,2011; 47: 489)

[8] Zhong N, Wang X D, Rong Y H, Wang L.  Mater Sci Eng, 2009; A506: 111

[9] Zhou S, Zhang K, Wang Y, Gu J F, Rong Y H.  Mater Sci Eng,2011; A528: 8006

[10] Zackay V F, Parker E R, Fahr D, Busch R.  ASM Trans Quart,1967; 60: 252

[11] Webster D.  ASM Trans Quart, 1968; 61: 816

[12] Zhang K, Zhang M H, Guo Z H, Chen N L, Rong Y H.  Mater Sci Eng, 2011; A528: 8486

[13] Rong Y H.  Acta Metall Sin, 2011; 47: 1483

     (戎咏华. 金属学报, 2011; 47: 1483)

[14] Koistinen D P, Marburger R E.  Acta Metall, 1959; 7: 59

[15] Fan X.  Metallic X-ray Physics. Beijing: Mechanical Industry Press, 1989: 159

     (范雄. 金属X射线学. 北京: 机械工业出版社, 1989: 159)

[16] Durnin J, Ridal K A.  J Iron Steel Inst, 1968; 1: 60

[17] Heimendahl M V.  Electron Microscopy of Materials: An Introduction. New York: Academic Press, 1980: 185

[18] Woo W, Balogh L, Ungar T, Choo H, Feng Z L. Mater Sci Eng, 2008; A498: 308

[19] Li W, Xu W Z, Wang X D, Rong Y H.  J Alloys Compd, 2009; 474: 546

[20] Stokes A R.  Proc Phys Soc, 1948; 61: 382

[21] Baker R G, Nutting J.  ISI Special Report No. 64.London: The Iron and Steel Institute, 1959: 1

[22] Lu L, Sui M L, Lu K.  Science, 2000; 287: 1463

[23] Wasserbach W.  Philos Mag, 1986; A53: 335

[24] Rhee M, Zbib H M, Hirth J P, Huang H, Rubia T.  Modelling Simul Mater Sci Eng, 1998; 6: 467

[25] Mitchell T E, Spitzig W A.  Acta Metall, 1965; 13: 1169
 
[1] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[4] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[5] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[6] LIU Man, HU Haijiang, TIAN Junyu, XU Guang. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel[J]. 金属学报, 2021, 57(6): 749-756.
[7] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[8] LU Bin, CHEN Furong, ZHI Jianguo, GENG Ruming. Enhanced Welding Properties of High Strength Steel via Rare Earth Oxide Metallurgy Technology[J]. 金属学报, 2020, 56(9): 1206-1216.
[9] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[10] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[11] Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. 金属学报, 2019, 55(2): 191-201.
[12] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[13] Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. 金属学报, 2018, 54(9): 1245-1252.
[14] Mingyue WEN, Wenchao DONG, Huiyong PANG, Shanping LU. Microstructure and Impact Toughness of Welding Heat-Affected Zones of a Fe-Cr-Ni-Mo High Strength Steel[J]. 金属学报, 2018, 54(4): 501-511.
[15] Jilan YANG, Yuankai JIANG, Jianfeng GU, Zhenghong GUO, Haiyan CHEN. Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel[J]. 金属学报, 2018, 54(1): 21-30.
No Suggested Reading articles found!