Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (4): 401-406    DOI: 10.3724/SP.J.1037.2011.00698
论文 Current Issue | Archive | Adv Search |
INVESTIGATION OF THE TOUGHNESS OF LOW CARBON TEMPERED MARTENSITE IN THE SURFACE OF Ni-Cr-Mo-B ULTRA-HEAVY PLATE STEEL
WANG Xiaoyong1, PAN Tao1, WANG Hua2, SU Hang1,LI Xiangyang3, CAO Xingzhong4
1. Division of Structural Materials, Central Iron and Steel Research Institute, Beijing 100081
2. Angang Steel Company Limited, Anshan 114021
3. China Iron and Steel Research Institute Group, Beijing 100081
4. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
Cite this article: 

WANG Xiaoyong, PAN Tao, WANG Hua, SU Hang,LI Xiangyang, CAO Xingzhong. INVESTIGATION OF THE TOUGHNESS OF LOW CARBON TEMPERED MARTENSITE IN THE SURFACE OF Ni-Cr-Mo-B ULTRA-HEAVY PLATE STEEL. Acta Metall Sin, 2012, 48(4): 401-406.

Download:  PDF(820KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Low carbon tempered martensite structures in the surface of Ni-Cr-Mo-B ultra-heavy plate steel was studied. The toughness at different locations in the surface zone was investigated by impact testing, and the sub-microstructures, such as packets and blocks of the martensite, at different distances (3, 15 and 25 mm) from the surface were observed by OM, SEM and electron backscattered diffraction (EBSD), and the dislocation density were tested by XRD and positron annihilation spectroscopy (PAS). The results indicate that the toughness of the tested steel in the 10 mm from the surface deteriorates sharply, which is mainly due to the bigger packet and block size and higher dislocation density in the tempered martensite.
Key words:  ultra-heavy plate steel      EBSD      positron annihilation spectroscopy (PAS)      dislocation density     
Received:  09 November 2011     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00698     OR     https://www.ams.org.cn/EN/Y2012/V48/I4/401

[1] Dong T.  Wide Heavy Plate, 1995; 1(3): 1

    (东涛. 宽厚板, 1995; 1(3): 1)

[2] Tang X S.  Mar Equip Mater Mark, 2010; 1: 10

    (唐学生. 船舶物资与市场, 2010; 1: 10)

[3] Di G B, Liu Z Y, Hao L Q, Liu X H.  Mater Mech Eng, 2008; 32(8): 1

    (狄国标, 刘振宇, 郝利强, 刘相华. 机械工程材料, 2008; 32(8): 1)

[4] Li R P, Xie Y H, Shu Z.  China Offshore Platform, 2003; 18(3): 1

    (李润培, 谢永和, 舒志. 中国海洋平台, 2003; 18(3): 1)

[5] Chen A Z, Niu J C, Deng W P.  Develop Appl Mater, 2010; 25(1): 9

    (陈爱志, 牛继承, 邓晚平. 材料开发与应用, 2010; 25(1): 9)

[6] Wang R F, Xu K, Xue G.  Hot Work Technol, 2007; 36(16): 43

    (王任甫, 徐科, 薛钢. 热加工工艺, 2007; 36(16): 43)

[7] Luo Z J, Shen J C, Su H, Ding Y H.  Develop Appl Mater, 2009; 24(5): 1

    (罗志俊, 沈俊昶, 苏航, 丁跃华. 材料开发与应用, 2009; 24(5): 1)

[8] Xu Z Y.  Martensite and Martensite Transformation. 2nd Ed.,Beijing: Science Press, 1999: 213

    (徐祖耀. 马氏体与马氏体相变. 第2版, 北京: 科学出版社, 1999: 213)

[9] Tomita Y, Okabayashi K.  Metall Trans, 1986; 176A: 1203

[10] Wang C F, Wang M Q, Shi J, Dong H.  Scr Mater, 2008; 58: 492

[11] Inoue T, Matsuda S, Okamura Y.  Trans JIM, 1970; 11: 36

[12] Luo Z J, Shen J C, Su H, Ding Y H, Yang C F, Zhang Y Q, Ma Y.Trans Mater Heat Treat, 2010; 31(10): 63

     (罗志俊, 沈俊昶, 苏航, 丁跃华, 杨才福, 张永权, 马跃.材料热处理学报, 2010; 31(10): 63)

[13] Park Y K, Waber J T.  Mater Lett, 1985; 3: 181

[14] Shirai Y, Araki H, Mori T, Nakamura W, Sakaki K.  J Alloys Compd,2002; 330-333: 125

[15] Kuramoto E, Tsutsumi T, Ueno K, Ohmura M, Kamimura Y. Comput Mater Sci, 1999; 14: 30

[16] Eldrup M.  J Phys IV, 1995; 5(C1): 93

[17] Mohamed H F M, Kwon J, Kim Y M, Kim W.  Nucl Instrum Methods Phys Res, 2007; 258B: 429

[18] Wu Y C, Zhu Z Y, Itoh Y, Ito Y.  Nucl Tech, 1998; 21: 135

     (吴奕初, 朱梓英, 伊东芳子, 伊藤泰男. 核技术, 1998; 21: 135)

[19] Wang S J, Wu Y C, Chen Z Q, Fang P F, Wang B, Zhang Y X. Applied Positron Spectroscopy. Wuhan: Hubei Science and Technology Press, 2008: 77

     (王少阶, 吴奕初, 陈志权, 方鹏飞, 王波, 张永学.应用正电子谱学.武汉: 湖北科学技术出版社, 2008: 77)

[20] Masumoto I, Suga H.  J Jpn Weld Soc, 1982; 51: 586

     (益本功, 须賀久明. 溶接学会誌, 1982; 51: 586)

[21] Liu Y M.  J Iron Steel Res, 2007; 19(4): 1

     (刘禹门. 钢铁研究学报, 2007; 19(4): 1)

[22] Yong Q L.  Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 37

     (雍岐龙. 钢铁中的第二相. 北京: 冶金工业出版社, 2006: 37)

[23] Mandziej S T.  Mater Sci Eng, 1993; A164: 275

[24] Cottrell A H.  Trans Met Soc AIME, 1958; 212: 192

[25] Cottrell A H.  Fracture. New York: Technology Press MIT and John Wiley, 1959: 20
[1] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[2] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[3] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[4] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[5] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[6] WU Xiang,ZUO Xiurong,ZHAO Weiwei,WANG Zhongyang. Mechanism of TiN Fracture During the Tensile Process of NM500 Wear-Resistant Steel[J]. 金属学报, 2020, 56(2): 129-136.
[7] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[8] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[9] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[10] XIONG Jian,WEI Dean,LU Songjiang,KAN Qianhua,KANG Guozheng,ZHANG Xu. A Three-Dimensional Discrete Dislocation Dynamics Simulation on Micropillar Compression of Single Crystal Copper with Dislocation Density Gradient[J]. 金属学报, 2019, 55(11): 1477-1486.
[11] Tingguang LIU, Shuang XIA, Qin BAI, Bangxin ZHOU. Morphological Characteristics and Size Distributions of Three-Dimensional Grains and Grain Boundaries in 316L Stainless Steel[J]. 金属学报, 2018, 54(6): 868-876.
[12] Siqian BAO, Bingbing LIU, Gang ZHAO, Yang XU, Shanshan KE, Xiao HU, Lei LIU. Three-Dimensional Morphologies of Abnormally Grown Goss Oriented Grains in Hi-B Steel During Secondary Recrystallization Annealing[J]. 金属学报, 2018, 54(6): 877-885.
[13] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[14] Yang XU,Siqian BAO,Gang ZHAO,Xiangbin HUANG,Rusheng HUANG,Bingbing LIU,Nana SONG. Three-Dimensional Morphologies of Different Oriented Grains in Hi-B Steel Formed During Early Stage of Secondary Recrystallization Annealing[J]. 金属学报, 2017, 53(5): 539-548.
[15] Lina WANG,Ping YANG,Weimin MAO. ANALYSIS OF MARTENSITIC TRANSFORMATIONDURING TENSION OF HIGH MANGANESETRIP STEEL AT HIGH STRAIN RATES[J]. 金属学报, 2016, 52(9): 1045-1052.
No Suggested Reading articles found!