Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (7): 781-785     DOI:
Research Articles Current Issue | Archive | Adv Search |
Microstructures and Hydrogen Permeation Characteristics of Nb-Ti-Ni Alloys
;;;
中国科学院金属研究所
Cite this article: 

;. Microstructures and Hydrogen Permeation Characteristics of Nb-Ti-Ni Alloys. Acta Metall Sin, 2008, 44(7): 781-785 .

Download:  PDF(1250KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Microstructures and hydrogen permeation properties of Nb50Ti25Ni25 and Nb40Ti30Ni30 alloy were investigated, respectively, and compared with Nb, Pd and PdAg alloy. The results indicated that the microstructures of Nb50Ti25Ni25 and Nb40Ti30Ni30 alloy consisted of combinations of the primary bcc-(Nb, Ti) solid solution with the eutectic {bcc-(Nb, Ti)+B2-TiNi}. The volume fraction of the eutectic phase increased with addition of Ni and Ti, in contrast to decrease of the primary phase. The hydrogen permeabilities of Nb50Ti25Ni25 and Nb40Ti30Ni30 alloys at 673K were 1.71×10-8 molm-1s-1Pa-0.5 and 1.03×10-8 molm-1s-1Pa-0.5, respectively, which were in same magnitude level as pure Pd metal, but a little lower than that of PdAg alloy. Increasing of eutectic phase favored resistance to hydrogen embrittlement, while the hydrogen permeability of the alloys increased evidently with the increasing of the primary phase. Alloys with high hydrogen permeability and good resistance to hydrogen embrittlement can be designed by optimization Ni and Ti content.
Key words:  Nb-Ti-Ni alloy      hydrogen permeability      hydrogen embrittlement      
Received:  05 November 2007     
ZTFLH:  TG146.41  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I7/781

[1]Ozaki T,Zhang Y,Komaki M,Nishimura C.Int J Hydro- gen Energy,2003;28:297
[2]Buxbaum R E,Marker T L.J Membr Sci,1993;85:29
[3]Ozaki T,Zhang Y,Komaki M,Nishimura C.Int J Hydro- gen Energy,2003;28:1229
[4]Tong H D,vanden Berg A H J,Gardeniers J G E,Jansen H V,Gielens F C,Elwenspoek M C.Thin Solid Films, 2005;479(1-2):89
[5]Amano M,Nishimura C,Komaki M.Mater Trans JIM, 1990;31:404
[6]Nishimura C,Komaki M,Amano M.Mater Trans JIM, 1991;32:501
[7]Yamaura S,Shimpo Y,Okouchi H,Nishida M,Kajita O, Kimura H,Inoue A.Mater Trans,2003;44:1885
[8]Yamaura S,Sakurai M,Hasegawa M,Wakoh K,Shimpo Y,Nishida M,Kimura H,Matsubara E,Inoue A.Acta Mater,2005;53:3703
[9]Hashi K,Ishikawa K,Matsuda T,Aoki K.J Alloys Compd, 2005;404-406:273
[10]Schmidt R,Schlereth M,Wipf H,Assmus W,Mullner M. J Phys:Condens Matter,1989;1:2473
[1] XIAO Na, HUI Weijun, ZHANG Yongjian, ZHAO Xiaoli. Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel[J]. 金属学报, 2021, 57(8): 977-988.
[2] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[3] LI Jinxu,WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels[J]. 金属学报, 2020, 56(4): 444-458.
[4] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[5] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[6] Xiaoli ZHAO, Yongjian ZHANG, Chengwei SHAO, Weijun HUI, Han DONG. Hydrogen Embrittlement of Intercritically AnnealedCold-Rolled 0.1C-5Mn Steel[J]. 金属学报, 2018, 54(7): 1031-1041.
[7] Jun SUN, Suzhi LI, Xiangdong DING, Ju LI. Hydrogenated Vacancy: Basic Properties and Its Influence on Mechanical Behaviors of Metals[J]. 金属学报, 2018, 54(11): 1683-1692.
[8] Peng JIANG,Tongxin YUAN,Yandong YU. Effect of Processing Conditions on Microstructure and Property of Multiphase V-Ti-Ni Alloys for Hydrogen Purifying[J]. 金属学报, 2017, 53(4): 433-439.
[9] Yongwei SUN,Jizhi CHEN,Jun LIU. STUDY ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF 1000 MPa GRADE 0Cr16Ni5Mo STEEL[J]. 金属学报, 2015, 51(11): 1315-1324.
[10] YAN Erhu, LI Xinzhong, TANG Ping, SU Yanqing, GUO Jingjie, FU Hengzhi. MICROSTRUCTURE AND HYDROGEN PERMEATION CHARACTERISTIC OF NEAR EUTECTIC Nb-Ti-Co HYDROGEN SEPARATION ALLOY[J]. 金属学报, 2014, 50(1): 71-78.
[11] LIU Yu, LI Yan, LI Qiang. EFFECT OF CATHODIC POLARIZATION ON HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF X80 PIPELINE STEEL IN SIMULATED DEEP SEA ENVIRONMENT[J]. 金属学报, 2013, 49(9): 1089-1097.
[12] WANG Yanfei GONG Jianming JIANG Wenchun JIANG Yong TANG Jianqun . NUMERICAL SIMULATION OF HYDROGEN INDUCED DELAYED FRACTURE OF AISI4135 HIGH STRENGTH STEEL USING COHESIVE ZONE MODELING[J]. 金属学报, 2011, 47(5): 594-600.
[13] LI Yiyi FAN Cungan RONG Lijian YAN Desheng LI Xiuyan. HYDROGEN EMBRITTLEMENT RESISTANCE OF AUSTENITIC ALLOYS AND ALUMINIUM ALLOYS[J]. 金属学报, 2010, 46(11): 1335-1346.
[14] Jian ZHANG. EFFECTS OF GRAIN-BOUNDARY PHASES ON HYDROGEN EMBRITTLEMENT OF FE-NI-CR AUSTENITIC ALLOY BY INTERNAL FRICTION[J]. 金属学报, 2008, 44(9): 1095-1098 .
[15] tian ye; WANG Mao-Qiu; Jinxu Li. HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY OF 40CrNi3MoV STEELS WITH THE STRENGTH LEVEL OF 1500MPa[J]. 金属学报, 2008, 44(4): 403-408 .
No Suggested Reading articles found!