Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (5): 569-573     DOI:
Research Articles Current Issue | Archive | Adv Search |
DEVELOPMENT OF RAPIDLY SOLIDIFIED TITANIUM ALUMINIDE COMPOUNDS
zhiguang Liu;Lihua CHAI;yuyong chen;
哈尔滨工业大学材料科学与工程学院
Cite this article: 

zhiguang Liu; Lihua CHAI; yuyong chen. DEVELOPMENT OF RAPIDLY SOLIDIFIED TITANIUM ALUMINIDE COMPOUNDS. Acta Metall Sin, 2008, 44(5): 569-573 .

Download:  PDF(882KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  TiAl alloys are potential candidate materials in automotive and aerospace industries for high-temperature structural applications. However, the low room temperature plasticity limits their wide application. Rapid solidification technique may improve the properties through modification of microstructure. In this paper, the evolution and character of microstructure and mechanical properties of rapidly solidified TiAl alloys produced with various processing methods, and the effect of alloy additions on the solidification behavior, microstructure and properties were overviewed, including the production and stability of metastable phases, consolidation processes of rapidly solidified ribbons/powders. It is expected to provide useful information for future research and development of TiAl alloys with improved properties for future engineering applications.
Key words:  TiAl alloys      rapid solidification      spray forming      undercooling      laser resolidification      
Received:  06 December 2007     
ZTFLH:  TG146  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I5/569

[1]Das S K,Davis L A.Mater Sci Eng,1988;A98:1
[2]Shen N F,Tang Y L,Guan S K.Acta Metall Sin,1996; 32:673 (沈宁福,汤亚力,关绍康.金属学报,1996;32:673)
[3]Vujic D,Li Z X,Whang S H.Metall Trans,1988;19A: 2445
[4]Hall E L,Huang S C.Acta Metall Mater,1990;38:539
[5]Shao G,Grosdidier T,Tsakiropoulos P.Scr Metall Mater, 1994;30:809
[6]Huang S C,Hall E L.Metall Trans,1991;22A:2619
[7]Hanamura T,Sugal T,Tanino M.J Mater Sci,1990;25: 3286
[8]Liu Z G,Chen Y Y,Chai L H,Kong F T.Trans Nonfer- rous Met Soc,2006;16(S1):711
[9]Chen Y Y,Liu Z G,Chal L H,Kong F T,Davies H V. Adv Mater Res,2007;29-30:103
[10]Whang S H,Li Z X.Mater Sci Eng,1988;A98:269
[11]Huang S C,Hall E L.Acta Metall Mater,1991;39:1053
[12]Tsukamoto S,Umezawa O.Mater Sci Eng,1997;A223: 99
[13]Miller T M,Wang L,Hofmeister W H,Witting J E,Ander- son I M.In:Bentley J,ed.,Advances in Materials Problem Solving with the Electron Microscope,Boston,MA:Mate- rials Research Society,2001:123
[14]Graves J A.Mater Sci Eng,1988;A98:265
[15]Huang S C,Hall E L.Metall Trans,1991;22A:427
[16]Huang S C,Hall E L,Gigliotti M F X.In:Stoloff N S,ed., High Temperature Ordered Intermetallic Alloys H Sympo- sium,Boston,MA:Materials Research Society,1987:481
[17]Huang S C,Siemers P A.Metall Trans,1989;20A:1899
[18]Zhang G,Blenkinsop P A,Wise M L H.Intermetallics, 1996;4:447
[19]Nishida M,Morizono Y,Kai T,Suqimoto J,Chiba A,Ku- maqae R.Mater Trans JIM,1997;38:334
[20]Eylon D,Cooke C M,Yolton C E,Nachtrab W T,Furrer D U.In:Henein H,Oki T,eds.,1st Int Conf on Process- ing Materials for Properties,Warrendale,PA:TMS,1993: 241
[21]Liu K W,Gerling R,Schimansky F P.Scr Mater,1999; 40:601
[22]Schimansky F P,Liu K W,Gerling R.Intermetallics,1999; 7:1275
[23]Gerling R,Schimansky F P,Wegmann G,Zhang J X. Mater Sci Eng,2002;A326:73
[24]Wegmann G,Gerling R,Schimansky F P,Zhang J X. Mater Sci Eng,2002;A329-331:99
[25]Chen W Z,Song X P,Qian K W,Gu H C.Mater Sci Eng, 1998;A247:126
[26]Grant P S.Prog Mater Sci,1995;39A:497
[27]Caesar C,K(?)ster U,Willnecker R,Herlach D M.Mater Sci Eng,1988;98:339
[28]Chen L F,Chen X C.Acta Phys Sin,1996;45:169 (陈立凡,陈熙琛.物理学报,1996;45:169)
[29]Liu Y C,Lin X,Guo X F,Yang G C,Zhou Y H.J Cryst Growth,2000;217:211
[30]Liu Y C,Shi Q Z,Yang G C.Mater Lett,2004;58:428
[31]Shao G,Tsakiropoulos P.Acta Metall Mater,1994;42: 2937
[32]Liu Y C,Yang G C,Guo X F,Yang J H,Xu D S,Zhou Y H.Mater Res Bull,2001;36:963
[33]Liu Y C.Mater Lett,2003;57:2262
[34]L(?)ser W,Lindenkreuz H G,Hermann R,Shuleshova O, Woodcock T G.Mater Sci Eng,2005;A413-414:398
[35]Shuleshova O,Woodcock T G,Lindenkreuz H G,Hermann R,L(?)ser W,Büchner B.Acta Mater,2007;55:681
[36]Liu Y C,Yang G C,Guo X F,Zhou Y H.Mater Lett, 2001;48:309
[37]Liu Y C,Shi Q Z,Yang G C,Zhou Y H.J Mater Sci, 2004;39:2613
[38]Liu Y C,Lan F,Yang G C,Zhou Y H.J Cryst Growth, 2004;271:313
[39]Liu Y C,Guo Z Q,Wang T,Xu D S,Song G S,Yang G C,Zhou Y H.J Mater Process Technol,2001;108:394
[40]Duan G H,Liu Y C,Yang G C,Zhou Y H.Mater Lett, 2003;57:1091
[41]Liu Y C,Yang G C,Guo X F,Huang J,Zhou Y H.J Cryst Growth,2001;222:645
[42]Liu Y C,Shi Q Z,Yang G C,Zhou Y H.Mater Lett,2005; 59:813
[43]Zhang X D,Brice C,Mahaffey D W,Zhang H,Schwendner K,Evans D J,Fraser H L.Scr Mater,2001;44:2419
[44]Qu H P,Wang H M.Mater Sci Eng,2007;A466:187
[1] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[2] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[3] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[4] XU Junfeng, ZHANG Baodong, Peter K Galenko. Model of Eutectic Transformation Involving Intermetallic Compound[J]. 金属学报, 2021, 57(10): 1320-1332.
[5] TIAN Tian, HAO Zhibo, JIA Chonglin, GE Changchun. Microstructure and Properties of a New Third Generation Powder Metallurgy Superalloy FGH100L[J]. 金属学报, 2019, 55(10): 1260-1272.
[6] Kuanhui HU, Xinping MAO, Guifeng ZHOU, Jing LIU, Zhifen WANG. Effect of Si and Mn Contents on the Microstructure and Mechanical Properties of Ultra-High Strength Press Hardening Steel[J]. 金属学报, 2018, 54(8): 1105-1112.
[7] Yun LI, Lianjie LIU, Xinming LI, Jinfu LI. Solidification of Undercooled Co75B25 Alloy[J]. 金属学报, 2018, 54(8): 1165-1170.
[8] Dandan FAN, Junfeng XU, Yanan ZHONG, Zengyun JIAN. Effect of Superheated Temperature and Cooling Rate on the Solidification of Undercooled Ti Melt[J]. 金属学报, 2018, 54(6): 844-850.
[9] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[10] Jinfu LI, Yaohe ZHOU. Remelting of Primary Solid in Rapid Solidification of Deeply Undercooled Alloy Melts[J]. 金属学报, 2018, 54(5): 627-636.
[11] Zengyun JIAN, Tao XU, Junfeng XU, Man ZHU, Fang'e CHANG. Development of Solid-Liquid Interfacial Energyof Melt-Crystal[J]. 金属学报, 2018, 54(5): 766-772.
[12] Bin ZHAI, Kai ZHOU, Peng Lü, Haipeng WANG. Rapid Solidification of Ti-6Al-4V Alloy Micro-Droplets Under Free Fall Condition[J]. 金属学报, 2018, 54(5): 824-830.
[13] Jianglei ZHU, Qing WANG, Haipeng WANG. Thermophysical Properties and Atomic Distribution of Undercooled Liquid Cu[J]. 金属学报, 2017, 53(8): 1018-1024.
[14] Qianqian GU, Ying RUAN, Haizhe ZHU, Na YAN. Influence of Cooling Rate on Microstructural Formation of Melt-Spun Fe-Al-Nb Ternary Alloy[J]. 金属学报, 2017, 53(6): 641-647.
[15] Huogen HUANG,Hongyang XU,Pengguo ZHANG,Yingmin WANG,Haibo KE,Pei ZHANG,Tianwei LIU. U-Cr Binary Alloys with Anomalous Glass-Forming Ability[J]. 金属学报, 2017, 53(2): 233-238.
No Suggested Reading articles found!