Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (3): 346-350     DOI:
Research Articles Current Issue | Archive | Adv Search |
STUDY ON THE EFFECT OF CHLORIDE IONS ON THE PASSIVE FILM ON REINFORCING STEEL IN SIMULATED CONCRETE PORE SOLUTIONS BY ELECTROCHEMICAL TECHNIQUES
Cite this article: 

. STUDY ON THE EFFECT OF CHLORIDE IONS ON THE PASSIVE FILM ON REINFORCING STEEL IN SIMULATED CONCRETE PORE SOLUTIONS BY ELECTROCHEMICAL TECHNIQUES. Acta Metall Sin, 2008, 44(3): 346-350 .

Download:  PDF(707KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Potentiodynamic anodic polarization, electrochemical impendence spectroscopy and Mott-Schottky plot were used to study the effect of passive potentials and chloride ion concentrations on the corrosion behavior of reinforcing steel in simulated concrete pore solutions. The results indicated that the compact passive films were formed on the reinforcing steel surface at different passive potentias from -0.200V to 0.200V vs SCE for 4800s, the superficial donor densities decreased with the potential while the deep donor densities increased with the potential, and the charge transfer resistance of the film reached the highest value at the passive potential 0.200V. Immersed in simulated concrete pore solutions with chloride ion concentration 0.01~0.08mol/L and pH12.50 for 24h, the passive film still behaved as n-type semiconductor, only one type of donor appeared from the Mott-Schottky plot, and the deep donor densities decreased with chloride ion concentrations.
Key words:  reinforcing steel      passive film      chloride ion      EIS      Mott-Schottky plot      
Received:  13 August 2007     
ZTFLH:  O646  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I3/346

[1]Kumar V.Corros Rev,1988;16:317
[2]Koleva D A,de Wit J H W,van Breugei K,Lodhi Z F, Ye G.J Electrochem Soc,2007;154:C261
[3]Du R G,Hu R G,Huang R S,Lin C J.Anal Chem,2006; 78:3179
[4]Sánchez M,Gregori J,Alonso M C,García-Jareno J J, Vicente F.Electrochim Acta,2006;52:47
[5]Hamadou L,Kadri A Benbrahim N.Appl Surf Sci,2005; 252:1510
[6]Alves Valéria A,Brett Christopher M A.Electrochim Acta, 2002;47:2081
[7]Cheng Y F,Luo J L.Electrochim Acta,1999;44:2947
[8]Cheng Y F,Luo J L.Electrochim Acta,1999;44:4795
[9]Sosa E,Cabrera-Sierra R,Oropeza M T,Oropeza M T, Hernández F,Casillas N,Tremont R,Cabrera C,González I.Electrochim Acta,2003;48:1665
[10]Deng H H,Nanjo H,Qian P,Santosa A,Ishikawa I,Ku- rata Y.Electrochim Acta,2007;52:4272
[11]Kitowski C J,Wheat H G.Corrosion,1997;53:216
[12]Sag(?)és A A,Kranc S C,Moreno E I.Corros Sci,1995;37: 1097
[13]Gomes W P,Vanmaekelbergh D.Electrochim Acta,1996; 41:967
[14]Zeng Y M,Luo J L.Electrochim Acta,2003;48:3551
[15]Davenport A J,Sansone M.J Electrochem Soc,1995;142: 725
[16]Kruger J,Long G G,In:McCafferty E,Brodd R J,eds., Surfaces,Inhibition and Passivation,Pennington,N J: The Electrochemical Society,1986:210
[17]Sikora Elzbieta Macdonald,Digby D.J Electrochem Soc, 2000;147:4087x
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[3] PAN Chengcheng, ZHANG Xiang, YANG Fan, XIA Dahai, HE Chunnian, HU Wenbin. Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater[J]. 金属学报, 2022, 58(5): 599-609.
[4] TANG Yanbing, SHEN Xinwang, LIU Zhihong, QIAO Yanxin, YANG Lanlan, LU Daohua, ZOU Jiasheng, XU Jing. Corrosion Behaviors of Selective Laser Melted Inconel 718 Alloy in NaOH Solution[J]. 金属学报, 2022, 58(3): 324-333.
[5] LV Chenxi, SUN Yangting, CHEN Bin, JIANG Yiming, LI Jin. Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel[J]. 金属学报, 2021, 57(12): 1607-1613.
[6] WEI Jie, WEI Yinghua, LI Jing, ZHAO Hongtao, LV Chenxi, DONG Junhua, KE Wei, HE Xiaoyan. Corrosion Behavior of Damaged Epoxy Coated Steel Bars Under the Coupling Effect of Chloride Ion and Carbonization[J]. 金属学报, 2020, 56(6): 885-897.
[7] GAO Bowen, WANG Meihan, YAN Maocheng, ZHAO Hongtao, WEI Yinghua, LEI Hao. Electrochemical Preparation and Corrosion Resistance of PEDOT Coatings on Surface of 2024 Aluminum Alloy[J]. 金属学报, 2020, 56(11): 1541-1550.
[8] Kaiqiang LI, Lujia YANG, Yunze XU, Xiaona WANG, Yi HUANG. Influence of SO42- on the Corrosion Behavior of Q235B Steel Bar in Simulated Pore Solution[J]. 金属学报, 2019, 55(4): 457-468.
[9] Jiang XU, Xike BAO, Shuyun JIANG. In Vitro Corrosion Resistance of Ta2N Nanocrystalline Coating in Simulated Body Fluids[J]. 金属学报, 2018, 54(3): 443-456.
[10] Dahai XIA, Shizhe SONG, Jianqiu WANG, Jingli LUO. Research Progress on Sulfur-Induced Corrosion of Alloys 690 and 800 in High Temperature and High Pressure Water[J]. 金属学报, 2017, 53(12): 1541-1554.
[11] Yongjun CHEN, Xiaogang HU, Jianbing QIANG, Chuang DONG. QUASICRYSTAL ABRASIVE POLISHING ON SOFT METALS VIA A CHARACTERISTIC SMEARING WEAR MECHANISM FOR EFFICIENT SURFACE FLATTENING, HARDENING AND CORROSION ENHANCEMENT[J]. 金属学报, 2016, 52(10): 1353-1362.
[12] Nan PIAO,Ji CHEN,Chengjiang YIN,Cheng SUN,Xinghang ZHANG,Zhanwen WU. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF ULTRAFINE-GRAINED 304L STAINLESS STEEL IN Cl- CONTAINING SOLUTION[J]. 金属学报, 2015, 51(9): 1077-1084.
[13] ZHONG Xiaocong, JIANG Liangxing, LÜ Xiaojun, LAI Yanqing, LI Jie, LIU Yexiang. EFFECTS OF CHLORIDE ION ON THE ELECTRO- CHEMICAL BEHAVIOR OF Pb-Ag-RE ALLOY ANODE[J]. 金属学报, 2015, 51(3): 378-384.
[14] FU Xinxin, DONG Junhua, HAN En-hou, KE Wei. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY MONITORING ON MILD STEEL Q235 IN SIMULATED INDUSTRIAL ATMOSPHERIC CORROSION ENVIORNMENT[J]. 金属学报, 2014, 50(1): 57-63.
[15] LIU Xiahe, WU Xinqiang, HAN En-hou. EFFECTS OF TEMPERATURE ON LECTROCHEMICAL CORROSION OF DOMESTIC NUCLEAR-GRADE 316L STAINLESS STEEL IN Zn-INJECTED AQUEOUS ENVIRONMENT[J]. 金属学报, 2014, 50(1): 64-70.
No Suggested Reading articles found!