Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (12): 1424-1430    DOI:
论文 Current Issue | Archive | Adv Search |
OPTIMIZED COMPOSITIONS OF Ti-(Cu, Ni)-Sn ALLOY FOR METALLIC GLASS FORMATION AND THEIR CORRELATION WITH EUTECTIC REACTION
LIU Yuanshuai; XU Jian
Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences
Cite this article: 

LIU Yuanshuai XU Jian. OPTIMIZED COMPOSITIONS OF Ti-(Cu, Ni)-Sn ALLOY FOR METALLIC GLASS FORMATION AND THEIR CORRELATION WITH EUTECTIC REACTION. Acta Metall Sin, 2008, 44(12): 1424-1430.

Download:  PDF(8488KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Adopting the “3D pinpointing approach”, compositional dependence of glass--forming ability (GFA) for Ti-(Cu1-xNix)-Sn (0.20≤x≤0.30, atomic fraction) quaternary alloys was systematically investigated. The alloy with the optimized GFA is located at Ti38Cu37.8Ni16.2Sn8. Its critical diameter for metallic glass formation is near 1.0 mm for the rods fabricated using Cu mold casting. This metallic glass exhibits the supercooled liquid region ΔTx of 56 K and the reduced glass transition temperature Trg of 0.57. By characterizing the microstructure of the arc-melted Ti38Cu37.8Ni16.2Sn8 alloy, it is indicated that solidification of the alloy melt undergoes a pseudo-binary eutectic reaction of L→Ti5Sn3Cu+TiCuNi.

Key words:  amorphous alloy      metallic glass      eutectic reaction      Ti alloy     
Received:  26 March 2008     
ZTFLH: 

TG139.8

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I12/1424

[1]Johnson W L.MRS Bull,1999;24:42
[2]Inoue A.Acta Mater,2000;28:279
[3]Greet A L,Ma E.MRS Bull,2007;32:611
[4]Li Y,Poon S J,Shiflet G J,Xu J,Kim D H,L(?)ffler J F. MRS Bull,2007;32:624
[5]Kim Y C,Kim W T,Kim D H.Mater Sci Eng,2004; A375-377:127
[6]Men H,Pang S,Inoue A,Zhang T.Mater Trans,2005; 46:2218
[7]Kim K B,Das J,Wang X D,Zhang X,Eckert J,Yi S. Philos Mag Lett,2006;86:479
[8]Ohkubo T,Nagahama D,Mukai T,Hono K.J Mater Res, 2007;22:1406
[9]Qin F X,Wang X M,Kawashima A,Zhu S L,Kimura H, Inoue A.Mater Trans,2006;47:1934
[10]Guo F Q,Wang H J,Poon S J,Shiflet G J.Appl Phys Lett,2005;86:091907
[11]Duan G,Wiest A,Lind M L,Kahl A,Johnson W L.Scr Mater,2008:58:465
[12]Zhang Q S,Zhang W,Inoue A.Mater Trans,2007;48: 3031
[13]Jiang Q K,Wang X D,Nie X P,Zhang G Q,Ma H,Feeht H J,Bendnarcik J,Franz H,Lin Y G,Cao Q P,Jiang J Z.Acta Mater,2008;56:1785
[14]Dai C L,Guo H,Shen Y,Li Y,Ma E,Xu J.Scr Mater, 2006;54:1403
[15]Shen Y,Ma E,Xu J.d Mater Sci Technol,2008;24:149
[16]Ma H,Shi L L,Xu J,Li Y,Ma E.Appl Phys Lett,20051 87:181915
[17]Zheng Q,Xu J,Ma E.J Appl Phys,2007;102:113519
[18]Lu Z P,Liu C T,Thompson J R,Porter W D.Phys Rev Lett,2004;92:245503
[19]Ponnambalam V,Poon S J,Shiflet G J.J Mater Res,2004; 19:1320
[20]Shen J,Chen Q J,Sun F J,Fan H B,Wang G.Appl Phys Lett,2005;86:151907
[21]Zhang T,Inoue A.Mater Trans JIM,1998;39:1001
[22]Zhang T,Inoue A.Mater Sci Eng,2001;A304-306:771
[23]Ma C L,Ishihara S,Soejima H,Nishiyama N,Inoue A. Mater Trans,2004;45:1802
[24]Huang Y J,Shen J,Sun J F,Yu X B.J Alloys Compd, 2007;427:171
[25]Wang Y L,Ma E,Xu J.Philos Mag Lett,2008;88:319
[26]Ma H,Shi L L,Xu J,Li Y,Ma E.J Mater Res,2006;21: 2204
[27]Zheng Q,Ma H,Ma E,Xu J.Scr Mater,2006;55:541
[28]Zhang L,Zhuo M J,Xu J.J Mater Res,2008;23:688
[29]Zhang L,Ma E,Xu J.Intermetallics,2008;16:584
[30]Zhang Z X,Dai C L,Xu J.J Mater Sci Technol,2008;in press
[31]Lin X H,Johnson W L.J Appl Phys,1995;78:6514
[32]Massalski T B.Binary Alloy Phase Diagrams.2 Ed.,Met- als Park,OH:ASM International,1996:1495
[33]Louzguine D V,Katao H D,Louzguina L V,Inoue A.J Mater Res,2004;19:3600
[34]Chen H S.Acta Metall,1976;24:153
[35]Miracle D B.Nature Mater,2004;3:697
[36]Guo F Q,Poon S J,Shiflet G J.J Appl Phys,2004;97: 013512
[37]Wang A P,Wang J Q.J Mater Res,2007;22:1
[38]Schuster J C,Naka M,Shibayanagi T.J Alloys Compd, 2000;305:L1
[39]Niessen A K,de Boer F R,Boom R,de Chatel P F,Mat- tens W C M,Miedema A R.Calphad,1983;7:51
[40]Wang D,Tan H,Li Y.Acta Mater,2005;53:2969
[41]Dai C L,Deng J W,Zhang Z X,Xu J.J Mater Res,2008; 23:1249
[42]Dai C L,Guo H,Li Y,Xu J.J Non-Cryst Solids,2008; 354:3659
[1] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[2] LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. 金属学报, 2022, 58(6): 807-815.
[3] LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys[J]. 金属学报, 2022, 58(4): 457-472.
[4] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[5] HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. 金属学报, 2022, 58(10): 1316-1324.
[6] ZHANG Ting, LI Zhongjie, XU Hao, DONG Anping, DU Dafan, XING Hui, WANG Donghong, SUN Baode. Microstruture and Properties of Ti/TNTZO Multi-Layered Material by Direct Laser Deposition[J]. 金属学报, 2021, 57(6): 757-766.
[7] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
[8] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
[9] JIANG Minqiang, GAO Yang. Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors[J]. 金属学报, 2021, 57(4): 425-438.
[10] PAN Jie, DUAN Fenghui. Rejuvenation Behaviors in Metallic Glasses[J]. 金属学报, 2021, 57(4): 439-452.
[11] LI Ning, HUANG Xin. Recent Advances on 3D Printed Bulk Metallic Glasses[J]. 金属学报, 2021, 57(4): 529-541.
[12] QU Ruitao, WANG Xiaodi, WU Shaojie, ZHANG Zhefeng. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. 金属学报, 2021, 57(4): 453-472.
[13] GUAN Pengfei, SUN Shengjun. Atomic-Level Study in the Structure and Its Instability of Metallic Glasses[J]. 金属学报, 2021, 57(4): 501-514.
[14] ZENG Qiaoshi, YIN Ziliang, LOU Hongbo. Polyamorphic Transitions in Metallic Glasses[J]. 金属学报, 2021, 57(4): 491-500.
[15] LIU Riping, MA Mingzhen, ZHANG Xinyu. New Development of Research on Casting of Bulk Amorphous Alloys[J]. 金属学报, 2021, 57(4): 515-528.
No Suggested Reading articles found!