Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (8): 868-874     DOI:
Research Articles Current Issue | Archive | Adv Search |
EFFECT OF VARIATION OF AXIAL LOAD ON MATERIAL DEFORMATIONS AND TEMPERATURE DISTRIBUTIONS IN FRICTION STIR WELDING
大连理工大学工程力学系
Cite this article: 

. EFFECT OF VARIATION OF AXIAL LOAD ON MATERIAL DEFORMATIONS AND TEMPERATURE DISTRIBUTIONS IN FRICTION STIR WELDING. Acta Metall Sin, 2007, 43(8): 868-874 .

Download:  PDF(741KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Fully coupled thermo-mechanical model of friction stir welding is used to analyze the effect of axial load on friction stir welding process. Results indicate that the insufficient axial load leads to the failure of the friction stir welding. The material deformation on the top surface is affected by the rotation of both the welding pin and the shoulder, which causes that the material deformation on the top surface is higher than the one near the bottom surface. The material deformation is not symmetric to the welding line. The material deformation on the advancing side is higher than the one on the retreating side. The asymmetry of the material deformation can be weakened with the increase of the axial load. The maximum temperature of the welding plate during the friction stir welding process is increased with the increase of the axial load. The temperature field near the welding tool in the nugget zone can become more homogeneous when the axial load is increased.
Key words:  Friction stir welding      fully coupled thermo-mechanical model      finite element method      equivalent plastic     
Received:  04 December 2006     
ZTFLH:  TG456.9  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I8/868

[1]Liu H J,Fujii H,Maeda M,Nogi K.J Mater Sci Technol, 2004;20,103
[2]Liu H J,Fujii H,Maeda M,Nogi K.J Mater Sci Technol, 2005;21:415
[3]Feng J C,Wang D Y,Wang P F.Chin Mech Eng,2004; 15:932 (冯吉才,王大勇,王攀峰.中国机械工程,2004;15:932)
[4]Chen Y C,Liu H J,Feng J C.Trans Chin Weld Inst, 2006;27(1):65 (陈迎春,刘会杰,冯吉才.焊接学报,2006;27(1):65)
[5]Zhao Y H,Lin S B,Shen J J,Wu L.J Aeronaut Mater, 2006;26(1):67
(赵衍华,林三宝,申家杰,吴林.航空材料学报,2006;26(1):67)
[6]Mishra R S,Ma Z Y,Charit I.Mater Sci Eng,2003;A341: 307
[7]Ma Z Y,Sharma S R,Mishra R S.Scr Mater,2006;54: 1623
[8]Ma Z Y,Sharma S R,Mishra R S.Metall Mater Trans, 2006;37A:3323
[9]Ma Z Y,Mishra R S.Scr Mater,2005;53:75
[10]Ma Z Y,Sharma S R,Mishra R S.Mater Sci Eng,2006; A433:269
[11]Mishra R S,Ma Z Y.Mater Sci Eng,2005;R50:1
[12]Seidel T U,Reynolds A P.Sci Technol Weld Joining, 2003;8:175
[13]Fonda R W,Lambrakos S G.Sci Technol Weld Joining, 2002;7:177
[14]Buffa G,Hun J,Shivpuri R,Fratini L.Mater Sci Eng, 2006;A419:389
[15]Xu S,Deng X,Reynolds A P,Seidel T U.Sci Technol Weld Joining,2001;6:191
[16]Long X,Khanna S K.Sci Technol Weld Joining,2005; 10:482
[17]Kamp N,Sullivan A,Tomasi R,Robson J D.Acta Mater, 2006;54:2003
[18]Lockwood W D,Reynolds A P.Mat Sci Eng,2003;A339: 35
[19]Zhang H W,Zhang Z,Chen J T.Trans Chin Weld Inst, 2005;26(9):13 (张洪武,张昭,陈金涛.焊接学报,2005;26(9):13)
[20]Zhang H W,Zhang Z,Chen J T.Mater Sci Eng,2005; A403:340
[21]Zhang H W,Zhang Z,Chen J T.Chin Mech Eng,2006; 17:719 (张洪武,张昭,陈金涛.中国机械工程,2006;17:719)
[22]Zhang H W,Zhang Z,Chen J T.Acta Metall Sin,2005; 41:853 (张洪武,张昭,陈金涛.金属学报,2005;41:853)
[23]Zhang H W,Zhang Z.In:Hu P,Reddy J N eds.,Int Conf on Enhancement and Promotion of Computational Meth- ods in Engineering Science and Mechanics,Changchun: Jilin University Press,2006:52
[24]Zhang Z,Chen J T,Zhang H W.J Aeronaut Mater,2005; 25(6):33 (张昭,陈金涛,张洪武.航空材料学报,2005;25(6):33)
[25]Zhang Z,Chen J T,Zhang H W.In:Batra R C,Qian L F, Zhang Y L,Li X N,Tso S K eds.,Int Conf on Mechanical Engineering and Mechanics,Nanjing,Science Press and Science Press USA Inc,2005:1388
[26]Zhang Z,Zhang H W.J Plast Eng,2006;58(3):108 (张昭,张洪武.塑性工程学报.2006;58(3):108)
[27]Zhang H W,Zhang Z,Chen J T.Chin J Mech Eng,2006; 42(7):103 (张洪武,张昭,陈金涛.机械工程学报,2006;42(7):103)
[28]Zhang Z,Zhang H W.Ordnance Mater Sci Eng,2006; 39(3):61 (张昭,张洪武.兵器材料科学与工程,2006;39(3):61)
[29]Zhang Z,Chen J T,Zhang H W.J Mater Eng,2006;(1): 19 (张昭,陈金涛,张洪武.材料工程,2006;(1):19)
[30]Zhang Z,Zhang H W.Acta Metall Sin,2006;42:998 (张昭,张洪武.金属学报,2006;42:998)
[31]Schmidt H,Hattel J.Modell Simul Mater Sci Eng,2005; 13:77
[32]Chen C M,Kovacevic R.Int J Mach Tools Manuf,2003; 43:1319
[33]Wang M C.Finite Element Method.Beijing:Tsinghua University Press,2003:561 (王勖成.有限单元法.北京:清华大学出版社,2003:561)
[34]ABAQUS Analysis User Manual,version 6.4,Hibbit, Karlsson and Sorensen Inc.,2003
[35]McClure J C,Feng Z,Tang W,Gould J E,Murr L E,Guo X.In:Vitek J M,David S A,Johnson J A,Smartt H B, DebRoy T eds,Proc 5th Int Conf on Trends in Welding Research,Pine Mountain,GA:ASM International,1998: 590
[1] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[2] HE Changshu, QIE Mofan, ZHANG Zhiqiang, ZHAO Xiang. Effect of Axial Ultrasonic Vibration on Metal Flow Behavior During Friction Stir Welding[J]. 金属学报, 2021, 57(12): 1614-1626.
[3] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[4] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
[5] Chen WANG, Beibei WANG, Peng XUE, Dong WANG, Dingrui NI, Liqing CHEN, Bolü XIAO, Zongyi MA. Fatigue Behavior of Friction Stir Welded SiCp/6092Al Composite[J]. 金属学报, 2019, 55(1): 149-159.
[6] Chuansong WU, Hao SU, Lei SHI. Numerical Simulation of Heat Generation, Heat Transfer and Material Flow in Friction Stir Welding[J]. 金属学报, 2018, 54(2): 265-277.
[7] Zongyi MA, Qiao SHANG, Dingrui NI, Bolv XIAO. Friction Stir Welding of Magnesium Alloys: A Review[J]. 金属学报, 2018, 54(11): 1597-1617.
[8] Jianhai YANG,Yuxiang ZHANG,Liling GE,Xiao CHENG,Jiazhao CHEN,Yang GAO. Effect of Hybrid Surface Nanocrystallization Before Welding on Microstructure and Mechanical Properties of Friction Stir Welded 2A14 Aluminum Alloy Joints[J]. 金属学报, 2017, 53(7): 842-850.
[9] Ju KANG,Suying LIANG,Aiping WU,Quan LI,Guoqing WANG. Local Liquation Phenomenon and Its Effect on Mechanical Properties of Joint in Friction Stir Welded 2219 Al Alloy[J]. 金属学报, 2017, 53(3): 358-368.
[10] Fenjun LIU, Li FU, Haiyan CHEN. Microstructures and Mechanical Properties of Thin Plate Aluminium Alloy Joint Prepared by High Rotational Speed Friction Stir Welding[J]. 金属学报, 2017, 53(12): 1651-1658.
[11] Guannan CHU,Yanli LIN,Weining SONG,Lin ZHANG. Forming Limit of FSW Aluminum Alloy Blank Based on a New Constitutive Model[J]. 金属学报, 2017, 53(1): 114-122.
[12] Yongkui LI, Chunyi QUAN, Shanping LU, Qingyang JIAO, Shijian LI, Zhonghai SUN. STUDY ON SHAPE CORRECTION OF THE THIN PLATE OF TA15 TITANIUM ALLOY BY POST WELD HEAT TREATMENT[J]. 金属学报, 2016, 52(3): 281-288.
[13] Peng XUE, Xingxing ZHANG, Lihui WU, Zongyi MA. RESEARCH PROGRESS ON FRICTION STIR WELDING AND PROCESSING[J]. 金属学报, 2016, 52(10): 1222-1238.
[14] Ju KANG,Jichao LI,Zhicao FENG,Guisheng ZOU,Guoqing WANG,Aiping WU. INVESTIGATION ON MECHANICAL AND STRESS CORROSION CRACKING PROPERTIES OF WEAKNESS ZONE IN FRICTION STIR WELDED 2219-T8 Al ALLOY[J]. 金属学报, 2016, 52(1): 60-70.
[15] LIU Fenjun, FU Li, ZHANG Wenyuan, MENG Qiang, DONG Chunlin, LUAN Guohong. INTERFACE STRUCTURE AND MECHANICAL PRO-PERTIES OF FRICTION STIR WELDING JOINT OF 2099-T83/2060-T8 DISSIMILAR Al-Li ALLOYS[J]. 金属学报, 2015, 51(3): 281-288.
No Suggested Reading articles found!