Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (8): 863-867     DOI:
Research Articles Current Issue | Archive | Adv Search |
SIMULATION OF STRESS IN REINFORCEMENTS AND STRESS-STRAIN CURVE OF SiC PARTICULATE Al-2618 MATRIX COMPOSITE
;;;
东北大学材料与冶金学院
Cite this article: 

;. SIMULATION OF STRESS IN REINFORCEMENTS AND STRESS-STRAIN CURVE OF SiC PARTICULATE Al-2618 MATRIX COMPOSITE. Acta Metall Sin, 2007, 43(8): 863-867 .

Download:  PDF(540KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A 15v% SiC particulate reinforced Al-2618 matrix composite was selected to simulate its stress-strain curve and the stress in the reinforcing particles. The simulation was also carried out to compare a composite with soft matrix to that with hard matrix, and the necessary experimental data for the simulation were measured on specimens of the composite under different heat treatments. An analytical model was established based on Eshelby equivalent inclusion approach to do the simulation by introducing numerical secant modulus or tangent modulus scheme respectively. The same modeling work was carried out by FEM analysis based on the unit cell model using a commercial ANSYS code. Through the comparison of the results between the simulation and experimental results, it is shown that the Eshelby model can predict the stress-strain curve of the composite with both hard matrix and soft matrix by introducing different numerical modules, while the FEM model can not be used to simulate the stress-strain curve of composite with soft matrix. The stress in the particles is much higher than that in matrix shown by the simulation, which indicates that load transfer is the main strengthening mechanism for the composite.
Key words:  particulate reinforcement      Eshelby approach      finite element analysis      strength calculation      property sim     
Received:  26 December 2006     
ZTFLH:  TB333  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I8/863

[1]Kaczmar J W,Pietrzak K,Wlosinski W.J Mater Process Technol,2000;106:58
[2]Zhao Y H,Weng G J.Int J Plast,1996;12:781
[3]Roatta A,Bolmro R E.Mater Sci Eng,1997;A229:192
[4]Farrissey L,Schmauder S,Dong M,Soppa E,Poech M H, McHugh P.Comput Mater Sci,1999;15:1
[5]Benedikt B,Rupnowski P,Kumosa M.Acta Mater,2003; 51:3483
[6]Tian F,Hu G K,Yang G Y.J Beijing Inst Technol,1996; 16:477 (田峰,胡更开,杨改英.北京理工大学学报,1996;16:477)
[7]Zong B Y,Guo X H,Derby B.Mater Sci Technol,1999; 15:827
[8]Mori T,Tanaka K.Acta Metall,1973;21:571
[9]Brown L M,Stobbs W M.Philos Mag,1976;34:1185
[10]Li Y Y,Chen Y.J Appl Mech,1990;57:562
[11]Bao G,Hutchinson J W,McMeeking R M.Acta Metall Mater,1991;39:1871
[12]Hirth J P.Scr Metall Mater,1991;25:1
[1] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[2] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[3] Shu GUO,En-Hou HAN,Haitao WANG,Zhiming ZHANG,Jianqiu WANG. Life Prediction for Stress Corrosion Behavior of 316L Stainless Steel Elbow of Nuclear Power Plant[J]. 金属学报, 2017, 53(4): 455-464.
[4] XU Hengdong ZHAO Haiyan S¨orn Ocylok Igor Kelbassa. STUDY ON CRACKS IN LASER DIRECT–CLADDED TITANIUM LAYER ON LOW CARBON STEEL[J]. 金属学报, 2012, 48(2): 142-147.
[5] FANG Chenfu CHEN Zhiwei XU Guoxiang HU Qingxian ZHOU Hangyu. STUDY ON THE PROCESS OF CTWW CO2 GAS SHIELDED WELDING[J]. 金属学报, 2012, 48(11): 1299-1305.
[6] LANG Wenchang XIAO Jinquan GONG Jun SUN Chao HUNG Rongfang WEN Lishi. INFLUENCE OF AXISYMMETRIC MAGNETIC FIELD ON CATHODE SPOTS MOVEMENT IN ARC ION PLATING[J]. 金属学报, 2010, 46(3): 372-379.
[7] CUI Hang CHEN Huaining CHEN Jing HUANG Chunling WU Changzhong. FEA OF EVALUATING MATERIAL YIELD STRENGTH AND STRAIN HARDENING EXPONENT USING A SPHERICAL INDENTATION[J]. 金属学报, 2009, 45(2): 189-194.
[8] ;. Finite Element Analysis on Compressive Property of a New Type of Porous Magnesium[J]. 金属学报, 2008, 44(2): 237-242 .
[9] Guo-Dong ZHANG. Finite Element Analysis of High Temperature Piping Creep for Considering the Effect of Inner Pressure and Welding Residual Stress[J]. 金属学报, 2008, 44(10): 1271-1276 .
[10] . A COMBINED STRENGTHEN MODEL OF THE AGEING PROCESS OF Al/SiCP COMPOSITES[J]. 金属学报, 2006, 42(8): 887-891 .
[11] Li Rong. Finite-element modeling of pure magnesium swaging[J]. 金属学报, 2006, 42(4): 394-398 .
[12] JING Hongyang; HUO Lixing; ZHANG Yufeng(Tianjin Universitx; Tianjin 300072);TO YODA Masao; FUJITA Asako(Osaka University Japan 565) (Manuscript received 1 995-04-04). EFFECT OF YIELD RATIO ON FRACTURE TOUGHNESS FOR HIGH STRENGTH STEEL[J]. 金属学报, 1996, 32(3): 265-268.
[13] LI Huan;LI Jiabao;SUN Lizhi;WANG Zhongguang(State Key Laboratory for Fatigue and Fracture of Materials;Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015)(Manuscript received 1996-05-10;in revised form 1996-09-23). EFFECT OF LOW TEMPERATURE TREATMENT ON RESIDUAL STRESSES IN SiC_p/6061Al COMPOSITE[J]. 金属学报, 1996, 32(12): 1279-1284.
[14] HUANG Zheng;YAO Mei Institute of Physics; Academia Sinica; Beijing Harbin Institute of Technology Institute of Physics;Academia Sinica;Beijing 100080. MODEL OF CLEAVAGE CRACK PROPAGATION ACROSS BOUNDARY[J]. 金属学报, 1990, 26(1): 53-57.
No Suggested Reading articles found!