Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (6): 589-594     DOI:
Research Articles Current Issue | Archive | Adv Search |
The Critical Processing Conditions for Directional Solidification of Solid/Gas Eutectics
Hua-Wei ZHANG;;
Cite this article: 

Hua-Wei ZHANG. The Critical Processing Conditions for Directional Solidification of Solid/Gas Eutectics. Acta Metall Sin, 2007, 43(6): 589-594 .

Download:  PDF(239KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Among all the processing parameters which affect porous structure obtained by directional solidification of a solid/gas (e.g. metal/hydrogen) eutectic (Gasar), the gas pressure above melts and the superheating temperature of melts are the most observable and easily governed because they directly control the amount of hydrogen saturated in melts. The critical processing conditions for hydrogen to escape and for formation of lotus-type porous structure have been deduced through theoretical analysis and calculation, and the following conclusions have been obtained: both the superheating temperature and the argon partial pressure should have moderate values, viz. with given partial pressures of hydrogen and argon, the superheating temperature should be bigger than the threshold of formation of lotus-type structure and smaller than that of hydrogen to escape; however, with given superheat degree and hydrogen partial pressure, the argon partial pressure should be bigger than the threshold of hydrogen to escape and smaller than that of formation of lotus-type porous structure. These conclusions were verified by the experimental results of lotus-type porous Mg and will contribute to the fabrication of high-quality regular porous metals by Gasar process.
Key words:  porous metal      solid/gas eutectic      unidirectional solidification      gas escaping      lotus-type structure      Gasa     
Received:  01 September 2006     
ZTFLH:  TG146  
  TG249  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I6/589

[1]Shapovalov V I.U S Pat,5,181,549,1993
[2]Liu Y,Li Y X,Wan J,Zhang H W.Mater Sci Eng,2005; A402:47
[3]Zhang H W,Li Y X,Liu Y.Acta Metall Sin,2006;42: 1165 (张华伟,李言样,刘源.金属学报,2006;42:1165)
[4]Liu Y,Li Y X,Zhang H W,Wan J.Acta Metall Sin,2005; 41:886 (刘源,李言祥,张华伟,万疆.金属学报,2005;41:886)
[5]Liu Y,Li Y X,Zhang H W,Wan J.J Mater Sci Technol, 2006;22:306
[6]Li Y X,Liu Y,Zhang H W,Wang X.In:Nakajima H, Kanetake N eds.,Proc MetFoam 2005,Sendai:The Japan Institute of Metals,2006:237
[7]Zhu M Y,Xiao Z Q.Mathematical and Physical Simu- lation of Steel Refining Process.Beijing:Metallurgical Industry Press,1998:1 (朱苗勇,萧泽强.钢的精炼过程数学物理模拟.北京:冶金工业出版社,1998:1)
[8]Han Q Y.Kinetics on Metallurgical Process.Beijing: Metallurgical Industry Press,1983:167 (韩其勇.冶金过程动力学.北京:冶金工业出版社,1983:167)
[9]Smithells C J.Smithells Metals Reference Book.7th ed., Boston:Butterworth-Heinemann,1992:14-7
[10]Miedema A R,Boom R.Z Metallkd,1978;69:183
[11]Shapovalov V I,Semik A P,Timchenko A G.Metallurgy, 1993;3:25
[12]Yamamura S,Shiota H,Murakami K.Mater Sci Eng, 2001;A318:137
[13]An G Y.Formation Theory of Castings.Beijing:China Machine Press,1989:173 (安阁英.铸件形成理论.北京:机械工业出版社,1989:173)
[14]Apprill J M,Poirier D R,Maguire M C,Gutsch T C. Mater Res Soc Symp Proc,1998;521:291
[1] XU Wence, CUI Zhenduo, ZHU Shengli. Recent Advances in Open-Cell Porous Metal Materials for Electrocatalytic and Biomedical Applications[J]. 金属学报, 2022, 58(12): 1527-1544.
[2] XU Xiuyue, LI Yanhui, ZHANG Wei. Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties[J]. 金属学报, 2020, 56(10): 1393-1400.
[3] Yanxiang LI, Xiaobang LIU. Directionally Solidified Porous Metals: A Review[J]. 金属学报, 2018, 54(5): 727-741.
[4] ZHUO Weijia, LIU Yuan, LI Yanxiang. EFFECT OF WITHDRAWING RATE ON PORE MORPHOLOGY OF LOTUS-TYPE POROUS COPPER PRODUCED BY SINGLE-MOLD GASAR TECHNIQUE[J]. 金属学报, 2014, 50(8): 921-929.
[5] LI Zaijiu, JIN Qinglin, YANG Tianwu, ZHOU Rong, JIANG Yehua. A THERMODYNAMIC MODEL FOR DIRECTIONAL SOLIDIFICATION OF METAL-HYDROGEN EUTECTIC[J]. 金属学报, 2014, 50(4): 507-514.
[6] YANG Qianqian, LIU Yuan, LI Yanxiang. MODELING AND SIMULATION OF STRUCTURAL FORMATION OF POROUS ALUMINUM IN GASAR SOLIDIFICATION[J]. 金属学报, 2014, 50(11): 1403-1412.
[7] LI Zaijiu, JIN Qinglin, YANG Tianwu, JIANG Yehua, ZHOU Rong. FABRICATION OF LOTUS-TYPE POROUS Cu-Zn ALLOYS WITH THE GASAR CONTINUOUS CASTING PROCESS[J]. 金属学报, 2013, 49(6): 757-762.
[8] PENG Dongjian, LIN Xin, ZHANG Yunpeng, GUO Xiong, WANG Meng, HUANG Weidong. INVESTIGATION OF EFFECT OF INTERFACE ENERGY ANISOTROPY ON DENDRITIC GROWTH IN UNIDIRECTIONAL SOLIDIFICATION BY FRONT TRACKING SIMULATION[J]. 金属学报, 2013, 49(3): 365-371.
[9] CHEN Liutao ZHANG Huawei LIU Yuan LI Yanxiang. EXPERIMENTAL RESEARCH ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK[J]. 金属学报, 2012, 48(3): 329-333.
[10] CHEN Liutao ZHANG Huawei LIU Yuan LI Yanxiang. THEORETICAL STUDY ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK[J]. 金属学报, 2012, 48(11): 1374-1380.
[11] LIU Yuan LI Yanxiang LIU Runfa ZHOU Rong JIANG Yehua LI Zhenhua. THEORETICAL ANALYSIS ON EFFECT OF TRANSFERENCE VELOCITY ON STRUCTURE OF POROUS METALS FABRICATED BY CONTINUOUS CASTING GASAR PROCESS[J]. 金属学报, 2010, 46(2): 129-134.
[12] GAN Chunlei LIU Xuefeng HUANG Haiyou XIE Jianxin. FABRICATION PROCESS, MICROSTRUCTURE AND MECHANICAL PROPERTIES OF BFe10–1–1 ALLOY TUBES BY CONTINUOUS UNIDIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2010, 46(12): 1549-1556.
[13] QIAO Junwei ZHANG Yong CHEN Guoliang. SYNTHESIS OF PLASTIC Zr–BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2009, 45(4): 410-414.
[14] . Effect of Transverse Convection Induced by Density Differences on Bidirectional Solidification of Metal-Gas Eutectic[J]. 金属学报, 2008, 44(9): 1057-1062 .
[15] Hua-Wei ZHANG. Hydrogen Solubility in Pure Metals for Gasar Process[J]. 金属学报, 2007, 43(2): 113-118 .
No Suggested Reading articles found!