Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (6): 583-588     DOI:
Research Articles Current Issue | Archive | Adv Search |
The lower bainitic carbides are precipitated from austenite
;FENG Chun;;;;;
清华大学材料系
Cite this article: 

FENG Chun. The lower bainitic carbides are precipitated from austenite. Acta Metall Sin, 2007, 43(6): 583-588 .

Download:  PDF(414KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The carbides of lower bainite is main constituent of bainite structure. The purpose of this paper is to clarify that where the lower bainitic carbides come from. Therefore ,three things have been completed in this paper:1. By using three group of experiment,the results indicate that the lower bainitic carbides can nucleate in the g side of a/g interface or between two bainitic ferrite sub-units and grow towards austenite. The carbides can exist across the interface of a/g or a/a.2. The results of another experiment indicate that the essence of phenomenon that lower bainitic carbides exist inside the ferrite is lower bainitic carbides precipitate from the g side at a/g interface. The carbides grow competitively with the ferrite,during the whole transformation process. Meanwhile the growing rate of ferrite is higher than that of carbides. As a result, the carbides are surrounded by ferrite which may give us a false concept that the lower bainitic carbides are precipitated from bainitic ferrite.3. The nucleation and growth model of lower bainitic carbides is proprosed on the basic of thermodynamics and the ledge-wise growth theory. From what has been mentioned above,it is suggested that lower bainitic carbides precipitate from carbon-enriched retained austenite rather than supersaturated ferrite. The essential of this paper is to identify whether existing the carbon-supersaturated bainitic ferrite , which directly concerning the mechanism of bainitic transformation.
Key words:  lower bainite      carbides      precipitation      transformation mechanism of Bainite      
Received:  16 January 2007     
ZTFLH:  TG111.5  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I6/583

[1]Hehemann R F,Kinsman K R,Aaronson H I.Metall Trans,1972;3:1077
[2]Hsu T Y,Gu W,Yu X.Proc Int Conf Solid-Solid Phase Transform,New York:Metallurgical Society of AIME, 1982:1029
[3]Aaronson H I.Metall Trans,1990;21A:1343
[4]Fang H S,Yang Z G,Yang J B,Bai B Z.Acta Metall Sin, 2005;41:449 (方鸿生,杨志刚,杨金波,白秉哲.金属学报,2005;41:449)
[5]Azuma M,Fujita N,Takahashi M.ISIJ Int,2005;45:221
[6]Bhadeshia,H K D H,Edmonds D V.Acta Metall,1980; 28:1265
[7]Bhadeshia H K D H.Acta Metall,1980;28:1103
[8]Bhadeshia H K D H.Bainite in Steels.London:The ??Cambridge University Press,2001:68,70
[9]Kang M K,Sun J L,Yang Q M.Metall Trans,1990;21A: 853
[10]Peet M,Babu S S,Miller M K,Bhadeshia H KD H.Scr Mater,2004;50:1277
[11]Kang M K,Zhang M X,Zhu M.Acta Mater,2006;54: 2121
[12]Honeycombe R W K.In:Marder A R,Goldstein J I eds, Proc Int Conf Phase Transformation in Ferrous Alloys. Warrendale,PA:TSM-AIME,1983:259
[13]Fang H S,Wang J J,Zheng Y K,Yang Z G.Acta Metall Sin,1993;29:445 (方鸿生,王家军,郑燕康,杨志刚.金属学报,1993;29:445)
[14]Aaronson H I.Metall Trans,1993;24A:241
[15]Aaronson H I.Journal of Microscopy,1974;102:275
[16]Fang H S,Wang J J,Yang Z G,Li C M,Bo X Z,Zheng Y K.Bainite Transformation.Beijing:Science Press,1999: 64,225,512 (方鸿生,王家军,杨志刚,李春明,薄祥正,郑燕康.贝氏体相变.北京:科学出版社,1999:64,225,512)
[17]Fang H S,Bo X Z,Wang J J.Mater Trans JIM,1998;39: 1264
[18]Fang H S,Wang J J,Zheng Y K.Metall Trans,1994;25A: 1
[19]Jin Q,Fang H S.Metall Trans,1990;21A:2637
[20]Xu Z Y.Theory of Phase Transformation.Beijing:Sci- ence Press,1988:366 (徐祖耀.相变原理.北京:科学出版社,1988:366)
[21]Fang H S,Wang J J,Yang Z G,Li C M,Zheng Y K. Metall Trans,1996;27A:1535
[1] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[2] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[3] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[4] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[5] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[6] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[7] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[8] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[9] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[10] XUE Kemin, SHENG Jie, YAN Siliang, TIAN Wenchun, LI Ping. Influence of Precipitation of China Low Activation Martensitic Steel on Its Mechanical Properties After Groove Pressing[J]. 金属学报, 2021, 57(7): 903-912.
[11] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[12] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
[13] CHEN Junzhou, LV Liangxing, ZHEN Liang, DAI Shenglong. Precipitation Strengthening Model of AA 7055 Aluminium Alloy[J]. 金属学报, 2021, 57(3): 353-362.
[14] HAN Baoshuai, WEI Lijun, XU Yanjin, MA Xiaoguang, LIU Yafei, HOU Hongliang. Effect of Pre-Deformation on Microstructure and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy After Ageing Treatment[J]. 金属学报, 2020, 56(7): 1007-1014.
[15] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
No Suggested Reading articles found!