Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (2): 211-216     DOI:
Research Articles Current Issue | Archive | Adv Search |
Numerical simulaton of cellular/dendritic transition and its growth during unidirectional solidificationin of Ti–Al alloy
Wang Kuangfei;
哈尔滨工业大学河南理工大学
Cite this article: 

Wang Kuangfei. Numerical simulaton of cellular/dendritic transition and its growth during unidirectional solidificationin of Ti–Al alloy. Acta Metall Sin, 2007, 43(2): 211-216 .

Download:  PDF(310KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Solute diffusion controlled solidification model were applied to simulate the initial stage cellular to dendrite transition of Ti55Al45 alloys during directional solidification at different velocities. The simulation results show,during cellular/dendritic transition , mixed structure zone composed of cells and dendrites was observed ,with two parallel closely spaced dendrites with secondary dendrites absent at the facing surfaces . The dendrite spacing are larger than that of cellular spacing at a given rate, the columnar grain spacing sharply increases to a maximum as solidification advance to coexistence zone. In addition, simulation also revealed the numbers of the seeds also exert an influence on the grain spacing, with increasing the numbers of the seed, the uniform degree of the columnar grain spacing tends to increase. Lastly the main influence factors of affecting cellular/dendritic transition were analyzed, which could be dendrite growth resulting in slight fluctuations of liquid composition occurred at growth front. The simulation results also are in reasonable agreement with experiment observation at low cooling rates.
Key words:  TiAl alloy      Cell/dendrite transition      Solute diffusion controlled model      
Received:  08 May 2006     
ZTFLH:  TG27  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I2/211

[1]Lan C W,Chang Y C.J Cryst Growth,2003;250:525
[2]Warren J A,Langer J S.Phys Rev,1990;42A:3518
[3]Kurz W,Fisher J D.Acta Metall,1981;29:12
[4]Lapin J,OndrúL,Nazmy M.Intermetallics,2002;10:1019
[5]Warren J A,Langer J S.Phys Rev,1993;47E:2702
[6]Rappaz M,Gandin C A.Acta Metall Mater,1993;41:345
[7]Nastac L,Stefanescu D M.Mater Sci Eng,1997;54:391
[8]Nastac L.Acta Mater,1999;17:4253
[9]Xu Q Y,Liu B C.J Mech Eng,2001;12:328(许庆彦,柳百成.中国机械工程,2001;12:328)
[10]Zhu M F,Chen J,Sun G X,Hong C P.Acta Metall Sin,2005:41:583(朱鸣芳,陈晋,孙国雄,洪俊杓.金属学报,2005;41:583)
[11]Li Q,Li D Z,Qian B N.Acta Metall Sin,2004;40:634(李强,李殿中,钱百年.金属学报,2004;40:634)
[12]Su Y Q,Liu C,Li X Z,Guo J J,Li B S,Jia J,Fu H Z.Intermetallics,2005;13:270
[13]Wagner A,Shollock B A,McLean M.Mater Sci Eng,2004;A374:270
[14]Mathiesen R H,Arnberg L.Acta Mater,2005;53:950
[15]Johnson D R,Chihara K,Inui H,Yamguch M M.Acta Mater,1998;18:6537
[16]Hunt J D,Lu S Z.Metall Mater Trans,1996;27A:611
[17]Mullins C W,Sekerka R F.J Appl Phys,1964;35:444
[1] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[2] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[3] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[4] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[5] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[6] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[7] Zhanxing CHEN,Hongsheng DING,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Microstructural Evolution and Mechanism of Solidified TiAl Alloy Applied Electric Current Pulse[J]. 金属学报, 2019, 55(5): 611-618.
[8] Yimin LIAO, Min FENG, Minghui CHEN, Zhe GENG, Yang LIU, Fuhui WANG, Shenglong ZHU. Comparative Study of Hot Corrosion Behavior of theEnamel Based Composite Coatings and the ArcIon Plating NiCrAlY on TiAl Alloy[J]. 金属学报, 2019, 55(2): 229-237.
[9] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[10] Yu PAN, Xin LU, Chengcheng LIU, Jianzhuo SUN, Jianbo TONG, Wei XU, Xuanhui QU. Effect of Sn Addition on Densification and Mechanical Properties of Sintered TiAl Base Alloys[J]. 金属学报, 2018, 54(1): 93-99.
[11] Tianrui LI, Guohuai LIU, Mang XU, Hongzhi NIU, Tianliang FU, Zhaodong WANG, Guodong WANG. Microstructures and High Temperature Tensile Properties of Ti-43Al-4Nb-1.5Mo Alloy in the Canned Forging andHeat Treatment Process[J]. 金属学报, 2017, 53(9): 1055-1064.
[12] Zhanxing CHEN,Hongsheng DING,Shiqiu LIU,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Effects of Direct Current on Microstructure and Properties of Ti-48Al-2Cr-2Nb Alloy[J]. 金属学报, 2017, 53(5): 583-591.
[13] Gang WANG,Lei XU,Yuyou CUI,Rui YANG. DENSIFICATION MECHANISM OF TiAl PRE-ALLOY POWDERS CONSOLIDATED BY HOT ISOSTATIC PRESSING AND EFFECTS OF HEAT TREATMENTON THE MICROSTRUCTURE OF TiAl POWDER COMPACTS[J]. 金属学报, 2016, 52(9): 1079-1088.
[14] Liang YANG,Shubo GAO,Yanli WANG,Teng YE,Lin SONG,Junpin LIN. EFFECT OF Si ADDITION ON THE MICROSTRUCTURE AND ROOM TEMPERATURE TENSILE PROPERTIES OF HIGH Nb-TiAl ALLOY[J]. 金属学报, 2015, 51(7): 859-865.
[15] ZHOU Huan, ZHANG Tiebang, WU Zeen, HU Rui, KOU Hongchao, LI Jinshan. FORMATION AND EVOLUTION OF PRECIPITATE IN TiAl ALLOY WITH ADDITION OF INTERSTITIAL CARBON ATOM[J]. 金属学报, 2014, 50(7): 832-838.
No Suggested Reading articles found!