Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (2): 125-130     DOI:
Research Articles Current Issue | Archive | Adv Search |
CU/AL INTERMETALLIC COMPOUNDS FORMATION ON CU BALL AND AL ALLOY PAD BONDING JOINT DURING THERMAL AGING
Hui XU;;
哈尔滨工业大学
Cite this article: 

Hui XU. CU/AL INTERMETALLIC COMPOUNDS FORMATION ON CU BALL AND AL ALLOY PAD BONDING JOINT DURING THERMAL AGING. Acta Metall Sin, 2007, 43(2): 125-130 .

Download:  PDF(750KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Copper ball bonding is an alternative interconnection technology that serves as a viable and cost-saving alternative to gold wire bonding which is commonly applied in microelectronic packaging. In this paper, 50μm copper wire were bonded to the Al+1%Si+0.5%Cu pad successfully by thermosonic wire bonding. Scanning Electron Microscopy, Energy Dispersive X-ray Spectrometer and Micro X-Ray Diffractomer were adopted to investigate the intermetallic compounds (IMC) at the interface of wire and pad. The results show that Cu/Al IMC growth followed the parabolic law as a function of aging times at certain aging temperatures, Cu/Al IMC growth was more sensitive to the aging temperature than the aging time, the activation energy of Cu/Al IMC growth was 85Kcal/mol and the major forming IMC were CuAl2 and Cu9Al4.
Key words:  Copper Ball Bonding      IMC      Aging      Micro-XRD      
Received:  29 May 2006     
ZTFLH:  TG425  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I2/125

[1]Harman G G.Wire Bonding in Microelectronics,Materials,Processes,Reliability,and Yield.2nd ed,New York:McGraw-Hill,1997:21
[2]Nguyen L T,McDonald D,Danker A R,Ng P.IEEE Trans Compon Packag Manuf Technol,1995;18A:423
[3]Philofsky E.Solid-State Electron,1970;13:1391
[4]Clatterbaugh G V,Weiner J A,Charles H K.IEEE Trans Compon Hybrid Manuf Technol,1984;CHMT-7:349
[5]Funamizu Y,Watanabe K.Trans Jpn Inst Met,1971;12:147
[6]Braunovic M,Alexandrov N.IEEE Trans Compon Packag Manuf Technol,1994;17:78
[7]Tamou Y,Li J,Russell S W,Mayer J W.Nucl Instrum Method Phys Res,1992;64B:130
[8]Rajan K,Wallach E R.d Cryst Growth,1980;49:297
[9]Kim H J,Lee J Y,Paik K W,Koh K W,Won J H,Choe S Y,Lee J,Moon J T,Park Y J.IEEE Trans Compon Packag Technol,2003;26:367
[10]Murali S,Srikanth N,Vath C JⅢ.Mater Res Bull,2003;38:637
[11]Westbrook J H,Fleiseher R L.Intermet Compd,1994;91125:227]
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[3] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[4] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[5] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[6] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[7] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[8] GENG Yaoxiang, TANG Hao, XU Junhua, ZHANG Zhijie, YU Lihua, JU Hongbo, JIANG Le, JIAN Jianglin. Formability and Mechanical Properties of High-Strength Al-(Mn, Mg)-(Sc, Zr) Alloy Produced by Selective Laser Melting[J]. 金属学报, 2022, 58(8): 1044-1054.
[9] REN Ping, CHEN Xingpin, WANG Cunyu, YU Feng, CAO Wenquan. Effects of Pre-Strain and Two-Step Aging on Microstructure and Mechanical Properties of Fe-30Mn-11Al-1.2C Austenitic Low-Density Steel[J]. 金属学报, 2022, 58(6): 771-780.
[10] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[11] CHEN Shenghu, RONG Lijian. Oxide Scale Formation on Ultrafine-Grained Ferritic-Martensitic Steel During Pre-Oxidation and Its Effect on the Corrosion Performance in Stagnant Liquid Pb-Bi Eutectic[J]. 金属学报, 2021, 57(8): 989-999.
[12] ZHU Shize, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. Influence of Cu Content on the Negative Effect of Natural Aging in SiC/Al-Mg-Si-Cu Composites[J]. 金属学报, 2021, 57(7): 928-936.
[13] ZHOU Hongyu, RAN Minrui, LI Yaqiang, ZHANG Weidong, LIU Junyou, ZHENG Wenyue. Effect of Diamond Particle Size on the Thermal Properties of Diamond/Al Composites for Packaging Substrate[J]. 金属学报, 2021, 57(7): 937-947.
[14] CHEN Junzhou, LV Liangxing, ZHEN Liang, DAI Shenglong. Precipitation Strengthening Model of AA 7055 Aluminium Alloy[J]. 金属学报, 2021, 57(3): 353-362.
[15] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
No Suggested Reading articles found!