Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (2): 119-124     DOI:
Research Articles Current Issue | Archive | Adv Search |
IN-SITU OBSERVATION OF δ→γ PHASE TRANSFORMATION OF AN AISI304 STAINLESS STEEL
Gaofei Liang;;;;
上海宝钢股份研究院前沿技术研究所
Cite this article: 

Gaofei Liang. IN-SITU OBSERVATION OF δ→γ PHASE TRANSFORMATION OF AN AISI304 STAINLESS STEEL. Acta Metall Sin, 2007, 43(2): 119-124 .

Download:  PDF(419KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The process and characteristics of high-temperature ferrite (δ) → austenite (γ) phase transformation during cooling of an AISI30 stainless steel have been observed in-situ by using a confocal laser scanning microscope. The results show γ phase appears prior at the δ grain boundaries. The cooling rate affects the growth morphology of γ phase which representatively includes polygon, block-like, round, dendritic, plat-form, network, and calabash-like. The independent γ dendrite becomes coarse, and may converge with others surrounding γ dendrites. The convergence degree for the γ dendrite at the δ grain boundary is clearly higher than that in the grain at the same cooling rate. The secondary dendrites become coarse, and grow competitively during cooling. The growth interface becomes unstable as the cooling rate increases. Meanwhile, the movement rate increases, along with the sudden rise and then fall of temperature.
Key words:  AISI 304 stainless steel      δ-ferrite      austenite      phase transformation      in-situ observation      
Received:  04 April 2006     
ZTFLH:  TG113  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I2/119

[1]Mark B,Lars H,Reiner K,Willi S,Dieter S.Steel Res,2001;72:484
[2]Ferry M,Thomson M,Manohar P A.Iron Steel Inst Jpn,2002;42:86
[3]Allan G K.Ironmaking Steelmaking,1995;22:465
[4]Liang G F,Wang C Q,Fang Y.Acta Metall Sin,2006;42:708(梁高飞,王成全,方园.金属学报,2006;42:708)
[5]Yin H,Emi T,Shibata H.Acta Mater,1999;47:1523
[6]Dippenaar R,Phelan D.Metall Mater Trans,2003;34B:495
[7]Phelan D,Dippenaar R.ISIJ Int,2004;44:414
[8]Phelan D,Dippenaar R.Metall Mater Trans,2004;35A:3701
[9]Liang G F,Wang C Q,Fang Y.Acta Metall Sin,2006;42:805(梁高飞,王成全,方园.金属学报,2006;42:805)
[10]Wei Z Y.Iron Steel,1980;15(2):45(魏振宇.钢铁,1980;15(2):45)
[11]Mizoguchi T,Miyazawa K.ISIJ Int,1995;35:771
[12]Ma Y,Hao Y,Yah F Y,Liu H J.Acta Metall Sin,2001;37:202(马颖,郝远,阎峰云,刘洪军.金属学报,2001;37:202)
[13]Liu Z Y,Fu H Z.Chin J Nonferrous Met,1997;7(1):164(刘志义,傅恒志.中国有色金属学报,1997;7(1):164)
[14]He G,Li J G,Mao X M,Fu H Z.J Synth Cryst,1995;24:278(何国,李建国,毛协民,傅恒志.人工晶体学报,1995;24:278)
[15]Liu Z Z,Kobayashi Y,Yang J,Nagai K,Kuwabara M.ISIJ Int,2006;46:847
[16]Ueshima Y,Mizoguchi S,Matsumiya T,Kajioka H.Metall Trans,1986;17B:845
[17]Ueshima Y,Sawada Y,Mizoguchi S,Kajioka H.Metall Trans,1989;20A:1375
[18]Liang G F,Wang C Q,Wu J C,Zhu G M,Yu Y,Fang Y.Acta Metall Sin (Engl Lett),2006;19:441
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[3] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[4] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[5] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[7] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[8] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[9] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[10] SHEN Guohui, HU Bin, YANG Zhanbing, LUO Haiwen. Influence of Tempering Temperature on Mechanical Properties and Microstructures of High-Al-Contained Medium Mn Steel Having δ-Ferrite[J]. 金属学报, 2022, 58(2): 165-174.
[11] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[12] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[13] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[14] LIU Man, HU Haijiang, TIAN Junyu, XU Guang. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel[J]. 金属学报, 2021, 57(6): 749-756.
[15] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
No Suggested Reading articles found!