Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (12): 1293-1296     DOI:
Research Articles Current Issue | Archive | Adv Search |
Effects of V, Cr on transformation and deformation characteristics of Ti-50.8Ni superelastic alloy
Zhi-rong HE;;;
陕西理工学院材料科学与工程学院
Cite this article: 

Zhi-rong HE. Effects of V, Cr on transformation and deformation characteristics of Ti-50.8Ni superelastic alloy. Acta Metall Sin, 2007, 43(12): 1293-1296 .

Download:  PDF(960KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Effects of V, Cr and heat treatment on transformation and deformation characteristics of Ti-50.8Ni (atomic fraction, %) superelastic alloy were investigated by differential scanning calorimetry and tensile test. The two-stage reversible transformation ADRDM (A-parent phase, R-R phase, M-martensite) occurred upon heating D cooling in 350-550℃ annealed Ti-50.8Ni alloy. With increasing annealing temperature, the R, M transformation temperature TR, TM of the alloy are first increase then decrease; the M transformation temperature hysteresis ΔTM decreases continuously; the R transformation temperature hysteresis ΔTR is constant. After adding 0.5%V, the transformation type and ΔTR,ΔTM of the alloy do nearly not change, while the TR, TM decrease. After adding 0.3%Cr, the transformation type and ΔTR of the alloy do nearly not change; the ΔTM increases; the TR, TM decrease greatly. The superelastic stress and strain of 400℃ annealed Ti-50.8Ni alloy are 473MPa and 6.4%, respectively. After adding 0.3%Cr, the superelastic stress of the alloy increases, reaches 620 MPa, and the superelastic strain decreases, reaches 3.5%. After adding 0.5%V, the superelastic stress and strain decrease, and reach 388 MPa and 4.9%, respectively. When annealing temperature increases from 400℃ to 500℃, the superelastic stresses of three alloys are all decrease.
Key words:  Ti-50.8Ni alloy      Ti-50.8Ni-0.5V alloy      Ti-50.8Ni-0.3Cr alloy      superelastic alloy      transformation      deforma     
Received:  16 January 2007     
ZTFLH:  TG113.25  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I12/1293

[1]Humbeeck J V.Mater Sci Eng,1999;A273-275:134
[2]Vokoun D,Kafka V,Hu C T.Smart Mater Struct,2003; 12:680
[3]Song G,Chaudhry V,Batur C.J Intell Mater Syst Struct, 2003;14:371
[4]Otsuka K,Wayman C M.Shape Memory Materials.Cam- bridge:Cambridge University Press,1998:220
[5]Zhao L C,Cai W,Zheng Y F.Shape Memory Effect and Superelasticity in Alloys.Beijing:National Defence In- dustry Press,2002:5 (赵连城,蔡伟,郑玉峰.合金的形状记忆效应与超弹性.北京:国防工业出版社,2002:5)
[6]Kim J I,Liu Y,Miyazaki S.Acta Mater,2004;52:487
[7]Michutta J,Somsen C,Yawny A,Dlouhy A,Eggeler G. Acta Mater,2006;54:3525
[8]He Z R.Acta Metall Sin,2007;43:353 (贺志荣.金属学报,2007;43:353)
[9]He Z R,Zhang Y H,Wang Y S,Zhou J E.Acta Metall Sin,2004;40:46 (贺志荣,张永宏,王永善,周敬恩.金属学报,2004;40:46)
[10]Saadat S,Salichs J,Noori M,Hou Z,Davoodi H,Suzuki Y,Masuda A.Smart Mater Struct,2002;11:218
[11]He Z R,Zhou J E,Miyazaki S.Acta Metall Sin,2003;39: 617 (贺志荣,周敬恩,宫崎修一.金属学报,2003;39:617)
[12]Kim J I,Miyazaki S.Acta Mater,2005;53:4545
[13]He Z R,Wang F,Zhou J E.Heat Treat Met,2006;31(9): 18 (贺志荣,王芳,周敬恩.金属热处理,2006;31(9):18)
[14]Chang S H,Wu S K.Scr Mater,2006;55:311
[15]Huang X,Liu Y.Scr Mater,2001;45:153
[16]Vaidynathan R,Bourke M A M,Dunand D C.Metall Mater Trans,2001;32A:777
[17]Hosoda H,Hanada S,Inoue K,Fukui T,Mishima Y, Suzuki T.Intermetallics,1998;6:291
[18]Hosoda H,Wakashima K,Miyazaki S,Inoue K.Mater Res Soc Syrup Proc,2005;842:353
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[5] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[8] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[9] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[12] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[13] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[14] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[15] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
No Suggested Reading articles found!