Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (12): 1245-1250     DOI:
Research Articles Current Issue | Archive | Adv Search |
INVESTIGATION ON MECHANICAL PROPERTIES AND SIZE EFFECTS OF NANOCRYSTALLINE TWIN COPPER
Bo Wu;
中国科学院力学研究所
Cite this article: 

Bo Wu. INVESTIGATION ON MECHANICAL PROPERTIES AND SIZE EFFECTS OF NANOCRYSTALLINE TWIN COPPER. Acta Metall Sin, 2007, 43(12): 1245-1250 .

Download:  PDF(1103KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The stress-strain relations of nanocrystalline twin copper with different size grains and twins are studied by using FEM simulations based on the conventional theory of mechanism-based strain gradient plasticity (CMSG). The concept of twin lamellae strengthening zone is proposed in our analysis with a cohesive interface model to simulate grain-boundary sliding and separation. Roles of many material parameters affecting stress-strain curves of polycrystalline twin copper are studied in detail. Furthermore, the effects of both twin lamellar spacing and twin lamellar distribution on the stress-strain relations are investigated under tension loading. The numerical simulations show that: both the strain gradient effect and the material hardening increase with decreasing the grain size and twin lamellar spacing. The distributions of twin lamellae have a significant influence on the general mechanical properties, and the effect will become into small with decreasing the grain and twin lamellar spacing. Finally, the prediction results of FEM are compared with the data of several experiments.
Key words:  strain gradient plasticity      twin      size effect      FEM simulation      
Received:  06 March 2007     
ZTFLH:  TG111.3  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I12/1245

[1]Lu L,Shen Y F,Chen X H,Qian L H,Lu K.Science, 2004;304:422
[2]Ma E,Wang Y M,Lu Q H,Sui M L,Lu L,Lu K.Appl Phys Left,2004;85:4932
[3]Shen Y F,Lu L,Lu Q H,Jin Z H,Lu K.Scr Mater,2005; 52:989
[4]Lu L,Schwaiter R,Shan Z W,Dao M,Lu K,Suresh S. Acta Mater,2005;53:2169
[5]Jin Z H,Gumbsch P,Ma E,Albe K,Lu K,Hahn H,Gleiter H.Scr Mater,2006;54:1163
[6]Hoagland R G,Kurtz R J,Henager C H.Set Mater,2004; 50:775
[7]Rao S I,Hazzledine P M.Philos Mag,2000;80A:2011
[8]Rao S I,Hazzledine P M.Scr Mater,1999;41:1085
[9]Huang Y,Qu S,Hwang K C,Li M,Gao H.Int J Plast, 2004;20:753
[10]Taylor G I.Proc Roy Sac London,1934;145A:362
[11]Taylor G I.J Inst Met,1938;62:307
[12]Gao H,Huang Y,Nix W D,Hutchinson J W.J Mech Phys Solids,1999;47:1239
[13]Qu S,Huang Y,Pharr G M,Hwang K C.Int J Plast, 2006;22:1265
[14]Swaddiwudhipong S,Hua J,Tho K K,Liu Z S.Int J Numer Methods Eng,2005;64:1400
[15]Hibbitt,Karlsson & Sorenson,Inc.ABAQUS/Standard User's Manual Version 6.2.2001
[16]Chen C R,Li S X.Mater Sci Eng,1998;A257:312
[17]Van der Sluis O,Schreurs P J G,Meijer H E H.Mech Mater,2001;33:499
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[4] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[5] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[6] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[7] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[8] GAO Dong, ZHOU Yu, YU Ze, SANG Baoguang. Selection of Twin Variants in Dynamic Plastic Deformation of Pure Ti at Liquid Nitrogen Temperature[J]. 金属学报, 2022, 58(9): 1141-1149.
[9] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[10] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[11] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[12] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[13] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[14] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[15] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
No Suggested Reading articles found!