Abstract Based on the distribution of stored energy in hot deformed austenite simulated by a crystal plasticity finite element method (CPFEM), the static recrystallization of a low carbon steel was investigated by a 2D cellular automaton (CA) model on mesoscale. The effect of the inhomogeneous distribution of the stored energy on the static recrystallization was simulated, which was difficult for the traditional recrystallization CA models. The simulated results revealed that the density of recrystallization nucleation varied in different sites due to the inhomogeneous distribution of stored energy, and the nuclei concentrated both at the grain boundary and in the heavily deformed grain interiors. The number of recrystallized nuclei increased and the distribution of the nucleation inclined to homogeneity with the decreased critical stored energy for nucleation. In addition, the recrystallization kinetics under various nucleation criteria was discussed in the present paper.
[1] Raabe D. Computational Materials Science. Weinheim: Wiley-VCH , 1998: 201 [2] Hesselbarth H W, Gobel I R. Acta Metall Mater, 1991; 39: 2135 [3] Marx V, Reher F R, Gottstein G. Acta Mater, 1999; 47: 1219 [4] Raabe D. Ann Rev Mater Res, 2002; 32: 53 [5] Goetz R L, Seetharaman V. Metall Mater Trans, 1998; 29A: 2307 [6] Ding R, Guo Z X. Acta Mater, 2001; 49: 3163 [7] Kroc J. Lect Note Comp Sci, 2002; 2329: 773 [8] Kugler G, Turk R. Acta Mater, 2004; 52: 4659 [9] Sun J H, Liu Y Z, Zhou L Y. Spec Steel, 2004; 25: 12 (孙景宏,刘雅政,周乐育.特殊钢,2004;25:12) [10] Dewri R, Chakraborti N. Model Simul Mater Sci Eng, 2005; 13: 173 [11] Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Jensen D J, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D. Mater Sci Eng, 1997; A238: 219 [12] Solas D E, Tome C N, Engler O, Wenk H R. Acta Mater, 2001: 49: 3791 [13] Choi S H, Cho J H. Mater Sci Eng, 2005; A405: 86 [14] Hill R, Rice J R. J Int Phys Solids, 2004; 20: 339 [15] Radhakrishnan B, Sarma G B, Zacharia T. Acta Mater, 1998; 46: 4415 [16] Raabe D, Becker R C. Model Simul Mater Sci Eng, 2000; 8: 445 [17] Humphreys F J. Mater Sci Forum, 2004; 467-470: 107 [18] Song X Y, Rettenmayr M, Muller C, Exner H E. Metall Mater Trans, 2001; 32A: 2199 [19] Davies C H J. Scr Mater, 1997; 36: 35 [20] Hutchinson W B. Int Met Rev, 1984; 29: 25 [21] Tong M M, Mo C L, Li D Z, Li Y Y. Chin J Mater Res, 2002; 16: 485 (佟铭明,莫春立,李殿中,李依依.材料研究学报,2002;16: 485) [22] Read W T, Shockley W. Phys Rev, 1950; 78: 275 [23] Hibbitt, Karlsson and Sorensen. Abaqus/Standard User's Manual, Vol.3, Pawtucket, RI, USA, 1999: 24.2.30-1 [24] Xiao N M, Yue Z F, Lan Y J, Tong M M, Li D Z. Acta Metall Sin, 2005; 41: 496 (肖纳敏,岳珠峰,兰勇军,佟铭明,李殿中.金属学报,2005; 41:496) [25] Lan Y J, Xiao N M, Li D Z, Li Y Y. Acta Mater, 2005; 53: 991 [26] Rollett A D. Prog Mater Sci, 1997; 42: 79 [27] Rios P R, Padilha A F. Mater Res, 2003; 6: 605 [28] Rollett A D, Srolovitz D J, Doherty R D, Anderson M P. Acta Metall Mater, 1989; 37: 627