Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (5): 615-620    DOI: 10.3724/SP.J.1037.2012.00069
论文 Current Issue | Archive | Adv Search |
EFFECT OF FORCED FLOW ON THREE DIMENSIONAL DENDRITIC GROWTH OF Al-Cu ALLOYS
ZHANG Xianfei1,2, ZHAO Jiuzhou1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. School of Material Science and Engineering, Shenyang Ligong University,Shenyang 110159
Cite this article: 

. EFFECT OF FORCED FLOW ON THREE DIMENSIONAL DENDRITIC GROWTH OF Al-Cu ALLOYS. Acta Metall Sin, 2012, 48(5): 615-620.

Download:  PDF(1657KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The dendrite morphology is determined by the interaction between the capillarity effect and the transports of heat and solute, and is significantly altered by the presence of fluid flow during solidification. A lot of numerical models have been developed to investigate the effect of fluid flow on the dendritic growth of pure materials. But up to date, only a few researches were carried out on the effect of fluid flow on the dendritic growth of alloys. The effect of fluid flow on three dimensional (3D) dendrite tip selection parameter of alloys remains an unsolved scientific problem. A 3D cellular automaton (CA) model for dendritic growth of alloys was developed in this paper. 3D CA is solved in coupling with a momentum transport model in order to predict the evolution of dendritic morphology during solidification of alloys in the presence of flow. The dendrite growth with a forced flow in an undercooled melt of an Al-4%Cu (mass fraction) alloy was simulated. The effect of forced flow on dendritic growth was investigated. The results show that a forced flow affect the three dimensional dendritic growth of an alloy significantly. The growth of the primary and secondary arm in the upstream direction is much greater than that in the downstream direction. The growth direction of the primary arm perpendicular to the flow direction tilted into the upstream direction. The dendrite tip of the primary arm perpendicular to the flow direction shows an asymmetric morphology. The degree of the tilt and the asymmetry of the tip become stronger with the increase of the forced flow velocity. With the increase of the flow velocity the growth velocity of the upstream dendrite tip increases, the radius and the selection parameter of the upstream dendrite tip decrease. For a given undercooling, the effect of forced flow on the selection parameter of the upstream dendrite tip becomes stronger with the increase of the anisotropy of the interfacial energy. For a given  alloy, the effect of forced flow on the selection parameter of the upstream dendrite tip also becomes stronger with the increase of undercooling.
Key words:  Al-Cu alloy      3D dendritic growth      forced flow      cellular automaton     
Received:  13 February 2012     
ZTFLH: 

TG111.4

 
Fund: 

National Natural Science Foundation of China

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00069     OR     https://www.ams.org.cn/EN/Y2012/V48/I5/615

[1] Langer J S, Muller-Krumbhaar H.  Acta Metall Mater, 1978; 26: 1681

[2] Bouissou P, Pelce P.  Phys Rev, 1989; 40A: 6673

[3] Dash S K, Gill W N.  Int J Heat Mass Transfer, 1984; 27: 1345

[4] Bouissou P, Perrin B, Tabeling P.  Phys Rev, 1989; 40A: 509

[5] Lee Y W, Ananth R, Gill W N.  J Cryst Growth, 1993; 132: 226

[6] Tong X, Beckermann C, Karma A.  Phys Rev, 2000; 61E: R49

[7] Tong X, Beckermann C, Karma A, Li Q.  Phys Rev, 2001; 63E: 061601

[8] Beckermann C, Diepers H J, Steinbach I, Karma A, Tong X. J Comput Phys, 1999; 154: 468

[9] Tonhardt R, Amberg G.  J Cryst Growth, 2000; 213: 161

[10] Tonhardt R, Amberg G.  Phys Rev, 2000; 62E: 828

[11] Tonhardt R, Amberg G.  J Cryst Growth, 1998; 194: 406

[12] Jeong J H, Goldenfeld N, Dantzig J A.  Phys Rev, 2001; 64E: 041602

[13] Jeong J H, Dantzig J A. Goldenfeld N.  Metall Mater Trans,2003; 34A: 459

[14] Chen C C, Tsai Y L, Lan C W.  Int J Heat Mass Transfer, 2009; 52: 1158

[15] Chen C C, Lan C W.  J Cryst Growth, 2010; 312: 1437

[16] Lu Y, Beckermann C, Ramirez J C.  J Cryst Growth, 2005; 280: 320

[17] Zhu M F, Lee S Y, Hong C P.  Phy Rev, 2004; 69E: 061610

[18] Sun D K, Zhu M F, Pan S Y, Raabe D.  Acta Mater, 2009; 57: 1755

[19] Yuan L, Lee P D.  Modell Simul Mater Sci Eng, 2010; 18: 055008

[20] Shi Y F, Xu Q Y, Liu B C.  Acta Phys Sin, 2011; 60: 126101

     (石玉峰, 许庆彦, 柳百成. 物理学报, 2011; 60: 126101)

[21] Gurevich S, Karma A, Plapp M, Trivedi R.  Phys Rev, 2010; 81E: 011603

[22] Nastac L.  Acta Mater, 1999; 47: 4253

[23] Beltran-Sanchez L, Stefanescu D M.  Metall Mater Trans,2004; 35A: 2471

[24] Zhang X F, Zhao J Z, Jiang H X, Zhu M F.  Acta Mater, 2012; 60: 2249

[25] Lipton J, Glicksman M E, Kurz W.  Mater Sci Eng, 1984; 65: 57

[26] Pan S Y, Zhu M F.  Acta Mater, 2010; 58: 340
[1] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[2] Mingfang ZHU, Like XING, Hui FANG, Qingyu ZHANG, Qianyu TANG, Shiyan PAN. Progresses in Dendrite Coarsening During Solidification of Alloys[J]. 金属学报, 2018, 54(5): 789-800.
[3] Tongmin WANG, Jingjing WEI, Xudong WANG, Man YAO. Progress and Application of Microstructure Simulation of Alloy Solidification[J]. 金属学报, 2018, 54(2): 193-203.
[4] Lei WEI, Yongqing CAO, Haiou YANG, Xin LIN, Meng WANG, Weidong HUANG. Numerical Simulation of Anomalous Eutectic Growth of Ni-Sn Alloy Under Laser Remelting of Powder Bed[J]. 金属学报, 2018, 54(12): 1801-1808.
[5] Fuxin WANG, Liangshun LUO, Liang WANG, Donghui ZHANG, Xinzhong LI, Yanqing SU, Jingjie GUO, Hengzhi FU. EFFECT OF ALLOY COMPOSITION AND COOLING RATE ON THE GROWTH MORPHOLOGY OF PRIMARY Al2Cu PHASE IN Al-Cu ALLOY DURING SOLIDIFICATION[J]. 金属学报, 2016, 52(3): 361-368.
[6] Mingfang ZHU, Qianyu TANG, Qingyu ZHANG, Shiyan PAN, Dongke SUN. CELLULAR AUTOMATON MODELING OF MICRO-STRUCTURE EVOLUTION DURING ALLOY SOLIDIFICATION[J]. 金属学报, 2016, 52(10): 1297-1310.
[7] Rui CHEN, Qingyan XU, Qinfang WU, Huiting GUO, Baicheng LIU. NUCLEATION MODEL AND DENDRITE GROWTH SIMULATION IN SOLIDIFICATON PROCESS OF Al-7Si-Mg ALLOY[J]. 金属学报, 2015, 51(6): 733-744.
[8] ZHANG Lei, ZHAO Honglei, ZHU Mingfang. SIMULATION OF SOLIDIFICATION MICROSTRUC-TURE OF SPHEROIDAL GRAPHITE CAST IRON USING A CELLULAR AUTOMATON METHOD[J]. 金属学报, 2015, 51(2): 148-158.
[9] ZHAO Jiuzhou, LI Lu, ZHANG Xianfei. DEVELOPMENT OF CELLULAR AUTOMATON MODELS AND SIMULATION METHODS FOR SOLIDIFICATION OF ALLOYS[J]. 金属学报, 2014, 50(6): 641-651.
[10] XU Hongyu, HUANG Lujun, GENG Lin, ZHANG Jie, HUANG Yudong. EFFECTS OF Cu CONTENT ON THE WEAR PROPERTIES OF Al2O3•SiO2sf/Al-Cu COMPOSITES[J]. 金属学报, 2013, 49(9): 1131-1136.
[11] LI Zhengyang, ZHU Mingfang, DAI Ting. MODELING OF MICROPOROSITY FORMATION IN AN Al-7%Si ALLOY[J]. 金属学报, 2013, 49(9): 1032-1040.
[12] SHI Yufeng XU Qingyan LIU Baicheng. SIMULATION OF EUTECTIC GROWTH IN DIRECTIONAL SOLIDIFICATION BY CELLULAR AUTOMATON METHOD[J]. 金属学报, 2012, 48(1): 41-48.
[13] JIANG Hongxiang ZHAO Jiuzhou. A THREE-DIMENSIONAL CELLULAR AUTOMATON SIMULATION FOR DENDRITIC GROWTH[J]. 金属学报, 2011, 47(9): 1099-1104.
[14] SHI Yufeng XU Qingyan GONG Ming LIU Baicheng. SIMULATION OF NH4Cl-H2O DENDRITIC GROWTH IN DIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2011, 47(5): 620-627.
[15] ZHI Ying LIU Xianghua YU Hailiang WANG Zhenfan. SIMULATION OF MICROSTRUCTURE AND PROPERTIES EVOLUTION OF MICRO ALLOYED STEEL DURING HOT DEFORMATION BY CELLULAR AUTOMATON[J]. 金属学报, 2011, 47(11): 1396-1402.
No Suggested Reading articles found!