Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (11): 1171-1176     DOI:
Research Articles Current Issue | Archive | Adv Search |
Gas Pressure Condition for Obtaining Uniform Lotus--Type Porous Structure by Gasar Process
ZHANG Huawei; LI Yanxiang; LIU Yuan
Key Laboratory for Advanced Materials Processing Technology; Ministry of Education; Department of Mechanical Engineering; Tsinghua University; Beijing; 100084
Cite this article: 

ZHANG Huawei; LI Yanxiang; LIU Yuan. Gas Pressure Condition for Obtaining Uniform Lotus--Type Porous Structure by Gasar Process. Acta Metall Sin, 2006, 42(11): 1171-1176 .

Download:  PDF(889KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Gas pressure is the effective and most easily controlled parameter for fabricating lotus-type porous metals with long cylindrical regular ordered pores by unidirectional solidification of metal-gas eutectic. The kind of gas which is applicable for Gasar process was discussed in this article. Gas pressure condition for obtaining uniform lotus-type porous structure in which the spatial distribution and the size of pores both are highly uniform has been established through analyzing the influence of gas pressure on the position of eutectic point and solidification mode (eutectic, hypereutectic and hypoeutectic mode), and comparing the homogeneity of lotus-type porous structures obtained under three solidification mode. As an example, the experimental results of magnesium and hydrogen system verified the above theory.
Key words:  Gasar      unidirectional solidification      porous metal      lotus-type structure      eutectic      
Received:  28 March 2006     
ZTFLH:  TG249  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I11/1171

[1] Shapovalov V I. US Pat, 5 181 549, 1993
[2] Shapovalov V I. MRS Bull, 1994; 4: 24
[3] Liu Y, Li Y X, Wan J, Zhang H W. Mater Sci Eng, 2005; A402: 47
[4] Li Y X, Liu Y, Zhang H W, Wang X. In: Nakajima H, Kanetake N eds., Proceedings of Metal Foam 2005, Osaka: The Japan Institute of Metals, 2006: 237
[5] Shapovalov V I, Boyko L. Adv Eng Mater, 2004; 6: 407
[6] Wolla J M, Provenzano V. Mater Res Soc Symp Proc, 1995; 371: 377
[7] Kovacik J. Acta Mater, 1998; 46: 5413
[8] Simone A E, Gibson L J. Acta Mater, 1996; 44: 1463
[9] Hyun S K, Murakami K, Nakajima H. Mater Sci Eng, 2001; A299: 241
[10] Xie Z K, Ikeda T, Okuda Y, Nakajima H. Mater Sci Eng, 2004; A386: 390
[11] Xie Z K, Ikeda T, Okuda Y, Nakajima H. Mater Sci Forum, 2004; 449-452: 661
[12] Ogushi T, Chiba H, Nakajima H, Ikeda T. J Appl Phys, 2004; 95: 5843
[13] Tane M, Hyun S K, Nakajima H. J Appl Phys, 2005; 97: 103701
[14] Liu Y, Li Y X, Zhang H W, Wan J. Acta Metall Sin, 2005; 41: 886 (刘源,李言祥,张华伟,万疆.金属学报,2005;41:886)
[15] Liu Y, Li Y X, Zhang H W, Wan J. Rare Met Mater Eng, 2005; 34: 1128 (刘源,李言祥,张华伟,万疆.稀有金属材料与工程, 2005;34:1128)
[16] Liu Y, Li Y X, Zhang H W. Acta Metall Sin, 2004; 40: 1121 (刘源,李言祥,张华伟.金属学报, 2004;40:1121)
[17] Xie Z K, Ikeda T, Okuda Y, Nakajima H. Mater Sci Forum, 2004; 449-452: 661
[18] Nakajima H, Hyun S K, Ohashi K, Ota K, Murakami K. Colloids Surf, 2001; A179: 209
[19] Suematsu Y, Hyun S K, Nakajima H. J Jpn Inst Met, 2004; 68: 257 (末松佳记,玄丞均,中屿英雄.日本金属学会志, 2004;68: 257)
[20] Ikeda T, Aoki T, Nakajima H. Metall Mater Trans, 2005; A36: 77 (玄丞均,池田辉之,中(?)英雄.日本金属学会志, 2004;68: 39)
[21] Nakahata T, Nakajima H. Mater Sci Eng, 2004; A384: 373
[22] Hyun S K, Ikeda T, Nakajima H. J Jpn Inst Met, 2004; 68: 39
[23] Hyun S K, Ikeda T, Nakajima H. Sci Technol Adv Mater, 2004; 5: 201
[24] Hyun S K, Nakajima H. Adv Eng Mater, 2002; 4: 741
[25] Nakahata T, Nakajima H. Mater Trans, 2005; 46: 587
[26] Yasuda H, Ohnaka I, Dhindaw B W, Takezawa N, Fujimoto S, Nagira T, Tsuchiyama A, Nakano T, Uesugi K. In: Nakajima H, Kanetake N, eds., Proceedings of Met Foam 2005, Osaka: The Japan Institute of Metals, 2006: 289
[27] Liu Y, Li Y X, Zhang H W, Wan J. Spec Cast Nonferrous Alloy, 2005; 25: 1 (刘源,李言祥,张华伟,万疆.特种铸造及有色合金, 2005;25:1)
[28] An G Y. Formation Theory of Castings. Beijing: China Machine Press, 1989: 173 (安阁英.铸件形成理论.北京:机械工业出版社,1989:173)
[29] Shapovalov V I, Semik A P, Timchenko A G. Russ Metall, 1993; (3): 21
[30] Yamamura S, Shiota H, Murakami K. Mater Sci Eng, 2001; A318: 137
[31] Schwarz H, Exner H E. J Microsc, 1983; 129: 155
[32] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2005; 41: 55 (张华伟,李言祥,刘源.金属学报, 2005;41:55)
[33] Liu Y, Li Y X, Wan J, Zhang H W. In: Nakajima H, Kanetake N eds., Proceedings of Met Foam 2005, Osaka: The Japan Institute of Metals, 2006: 241
[1] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[2] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[3] ZHANG Lili, JI Zongwei, ZHAO Jiuzhou, HE Jie, JIANG Hongxiang. Key Factors Influencing Eutectic Si Modification in Al-Si Hypoeutectic Alloy by Trace La[J]. 金属学报, 2023, 59(11): 1541-1546.
[4] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[5] XU Wence, CUI Zhenduo, ZHU Shengli. Recent Advances in Open-Cell Porous Metal Materials for Electrocatalytic and Biomedical Applications[J]. 金属学报, 2022, 58(12): 1527-1544.
[6] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[7] MA Dexin, ZHAO Yunxing, XU Weitai, PI Libo, LI Zhongxing. Surface Effect on Eutectic Structure Distribution in Single Crystal Superalloy Castings[J]. 金属学报, 2021, 57(12): 1539-1548.
[8] XU Junfeng, ZHANG Baodong, Peter K Galenko. Model of Eutectic Transformation Involving Intermetallic Compound[J]. 金属学报, 2021, 57(10): 1320-1332.
[9] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[10] HUA Hanyu,XIE Jun,SHU Delong,HOU Guichen,Naicheng SHENG,YU Jinjiang,CUI Chuanyong,SUN Xiaofeng,ZHOU Yizhou. Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content[J]. 金属学报, 2020, 56(2): 161-170.
[11] BAO Feiyang, LI Yanfen, WANG Guangquan, ZHANG Jiarong, YAN Wei, SHI Quanqiang, SHAN Yiyin, YANG Ke, XU Bin, SONG Danrong, YAN Mingyu, WEI Xuedong. Corrosion Behaviors and Mechanisms of ODS Steel Exposed to Static Pb-Bi Eutectic at 600 and 700 ℃[J]. 金属学报, 2020, 56(10): 1366-1376.
[12] XU Xiuyue, LI Yanhui, ZHANG Wei. Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties[J]. 金属学报, 2020, 56(10): 1393-1400.
[13] ZHANG Jianfeng,LAN Qing,GUO Ruizhen,LE Qichi. Effect of Alternating Current Magnetic Field on the Primary Phase of Hypereutectic Al-Fe Alloy[J]. 金属学报, 2019, 55(11): 1388-1394.
[14] Baogang WANG, Hongliang YI, Guodong WANG, Zhichao LUO, Mingxin HUANG. Reconstruction of 3D Morphology of TiB2 in In Situ Fe Matrix Composites[J]. 金属学报, 2019, 55(1): 133-140.
[15] Guangdong WANG, Ni TIAN, Changshu HE, Gang ZHAO, Liang ZUO. Formation of Second-Phases in a Direct-Chill Casting Al-12Si-0.65Mg-xMn Alloy[J]. 金属学报, 2018, 54(7): 1059-1067.
No Suggested Reading articles found!