Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (9): 994-998     DOI:
Research Articles Current Issue | Archive | Adv Search |
VISION-BASED IDENTIFICATION MODEL OF WELDING POOL WIDTH DYNAMIC RESPONDENCE IN ALUMINUM ALLOY PULSED MIG PROCESS
SHI Yu; FAN Ding; HUANG An; CHEN Jianhong
State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials;Lanzhou University of Technology; Lanzhou 730050
Cite this article: 

SHI Yu; FAN Ding; HUANG An; CHEN Jianhong. VISION-BASED IDENTIFICATION MODEL OF WELDING POOL WIDTH DYNAMIC RESPONDENCE IN ALUMINUM ALLOY PULSED MIG PROCESS. Acta Metall Sin, 2005, 41(9): 994-998 .

Download:  PDF(193KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A vision sensing system for taking and processing the image of MIG welding pool of aluminum alloy has been setup in this paper. The morphological operator which can effectively wipe off noise and cathode pulverization' area in image was used to process the image of the aluminum alloy MIG welding pool. Based on the step response experiment, the welding pool width model of dynamic process in aluminum alloy pulsed MIG welding is identified by least square method. The input parameters of the model are welding wire speed, base current and pulse duty ratio, and the output is beam width of welding pool. The influence of wire speed, base current and pulse duty ratio on welding pool width is analyzed, which provides the theoretical basis to realize the intelligent control for aluminum alloy pulsed MIG welding process.
Key words:  aluminum alloy      welding pool width      vision sensing system      
Received:  22 February 2005     
ZTFLH:  TG444.74  
  TP317.4  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I9/994

[1] Kovacevic R, Zhang Y M. J Manuf Sci Eng, 1997; 119: 161
[2] Saedi H R, Unkel W. Weld J, 1988; 67: 247
[3] Gao J Q,Wu C S. Acta Metall Sin, 2000; 36: 1284 (高进强,武传松.金属学报,2000;36:1284)
[4] Chen S B, Chen W J, Lin T. Trans Chin Weld Inst, 2001; 22(3): 5 (陈善本,陈文杰,林涛.焊接学报,2001;22(3):5)
[5] Ohshima K, Yamamoto M, Tanii T, Yamane S. IEEE Trans Ind Appl, 1992; 28: 607
[6] Frank Y S, Cheng S X. Inf Sci, 2004; 167: 9!
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[3] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[4] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[5] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[7] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[8] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[9] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[10] WANG Guanjie, LI Kaiqi, PENG Liyu, ZHANG Yiming, ZHOU Jian, SUN Zhimei. High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys[J]. 金属学报, 2022, 58(1): 75-88.
[11] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
[12] SUN Jiaxiao, YANG Ke, WANG Qiuyu, JI Shanlin, BAO Yefeng, PAN Jie. Microstructure and Mechanical Properties of 5356 Aluminum Alloy Fabricated by TIG Arc Additive Manufacturing[J]. 金属学报, 2021, 57(5): 665-674.
[13] LIU Gang, ZHANG Peng, YANG Chong, ZHANG Jinyu, SUN Jun. Aluminum Alloys: Solute Atom Clusters and Their Strengthening[J]. 金属学报, 2021, 57(11): 1484-1498.
[14] LI Jichen, FENG Di, XIA Weisheng, LIN Gaoyong, ZHANG Xinming, REN Minwen. Effect of Non-Isothermal Ageing on Microstructure and Properties of 7B50 Aluminum Alloy[J]. 金属学报, 2020, 56(9): 1255-1264.
[15] GAO Bowen, WANG Meihan, YAN Maocheng, ZHAO Hongtao, WEI Yinghua, LEI Hao. Electrochemical Preparation and Corrosion Resistance of PEDOT Coatings on Surface of 2024 Aluminum Alloy[J]. 金属学报, 2020, 56(11): 1541-1550.
No Suggested Reading articles found!