Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (6): 573-576     DOI:
Research Articles Current Issue | Archive | Adv Search |
Critical Driving Force and Nonlinear Characteristics of Martensitic Pretransition
WAN Jianfeng; WANG Jiannong; CHEN Jinsong
School of Materials Science and Engineering; Shanghai Jiaotong University; Shanghai 200030
Cite this article: 

WAN Jianfeng; WANG Jiannong; CHEN Jinsong. Critical Driving Force and Nonlinear Characteristics of Martensitic Pretransition. Acta Metall Sin, 2005, 41(6): 573-576 .

Download:  PDF(118KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The critical driving force of martensitic pretransition has been calculated based on the Hamiltonian containing electron-phonon interaction. The calculated results shows that the values of the driving force is of the same level as that of the condensed phonon. Considered the electron-phonon interaction and the condensation of TA or LA phonon, the double sine-Gordon equation of atomic phase angle has been proposed to study the nonlinear characteristics of the pretransition and the electron-phonon coupling mechanism may be taken as its main mechanism.
Key words:  martensitic pretransition      electron-phonon interaction      
Received:  01 September 2004     
ZTFLH:  TG113  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I6/573

[1]Zheludev A,Shapiro S M,Wochner P,Schwartz A,Wall M,Tanner L E.Phys Rev,1995;51B:11310
[2]Zheludev A,Shapiro S M,Wochner P,Tanner L E.Phys Rev,1996;54B:15045
[3]Satija S K,Shapiro S M,Salamon M B,Wayman C M. Phys Rev,1984;29B:6031
[4]Fuchizaki K,Yamada Y.Phys Rev,1989;40B:4740
[5]Stassis C,Zarestky J,Wakabayashi N.Phys Rev Lett, 1978;41:1726
[6]Heiming A,Petry W,Trampenau J,Alba M,Herzig C, Schober H R,Vogl G.Phys Rev,1991;43B:10948
[7]Petry W,Flottmann T,Heiming A,Trampenau J,Alba M,Vogl G.Phys Rev Lett,1988;61:722
[8]Petry W,Heiming A,Trampenau J,Alba M,Herzig C, Schober H R,Vogl G.Phya Rev,1991;43B:10933
[9]Trampenau J,Heiming A,Petry W,Alba M,Herzig C, Miekeley W,Schober H R.Phys Rev,1991;43B:10963
[10]Guenin G,Jara D R,Morin M,Delaey L,Pynn R,Gobin P E.J Phys Colloq,1982;43(C4):597
[11]Horovitz B,Murray J L,Krumhansl J A.Phys Rev,1978;18B:3549
[12]Sanati M,Saxena A.Physica,1998;123D:368
[13]Huang K.Solid State Physics.Beijing:Higher Education Press,2002:512 (黄昆.固体物理.北京:高等教育出版社,2002:512)
[14]Dodd R K,Eilbeck J C,Gibbon J D,Morris H C.Solitons and Nonlinear Wave Equations.London:Academic Press,1984:593
[1] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[2] ZHANG Limin, LI Ning, ZHU Longfei, YIN Pengfei, WANG Jianyuan, WU Hongjing. Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing[J]. 金属学报, 2023, 59(12): 1624-1632.
[3] . The Mechanism and Damage Model for the Dynamic Tensile Fracture of Liquid Aluminum with He Bubble[J]. 金属学报, 0, (): 0-0.
[4] . Nanoscratching Mechanical Performance of the TiZrHfCuBe High-Entropy Metallic Glass[J]. 金属学报, 0, (): 0-0.
[5] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[7] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[8] .  {111}/{111} Near Singular Boundaries in a Dynamically Recrystallized Al-Zn-Mg-Cu Alloy Compressed at Elevated Temperature[J]. 金属学报, 0, (): 0-0.
[9] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[10] LI Dianzhong, WANG Pei. Tailoring Microstructures of Metals[J]. 金属学报, 2023, 59(4): 447-456.
[11] . Enhancing Tribological Properties in a Refractory High-entropy Alloy via Forming Eutectic Structure[J]. 金属学报, 0, (): 0-0.
[12] . Interfacial Compatibility Study for Laser Melting Deposition of CoCrNiCu Medium Entropy Alloy on 316L Austenitic Stainless Steel Surface[J]. 金属学报, 0, (): 0-0.
[13] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[14] ZHAO Yonghao, MAO Qingzhong. Toughening of Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1385-1398.
[15] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
No Suggested Reading articles found!