Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (4): 342-346     DOI:
Research Articles Current Issue | Archive | Adv Search |
Effect Of Hydrogen On Nanoindentation Creep Of Type 316 Stainless Steel
GAO Xin; QIAO Lijie; SU Yanjing; CHU Wuyang
Department of Materials Physics; University of Science and Technology Beijing; Beijing 100083
Cite this article: 

GAO Xin; QIAO Lijie; SU Yanjing; CHU Wuyang. Effect Of Hydrogen On Nanoindentation Creep Of Type 316 Stainless Steel. Acta Metall Sin, 2005, 41(4): 342-346 .

Download:  PDF(212KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of hydrogen on nanoindentation creep of type 316 stainless steel has been investigated by nanoindentation techniques. The results showed that the crept saturation displacement increased twice After outgassing at room temperature for 200 h, the creep curves are basically identical with that before charging. This indicates the creep is caused by diffused hydrogen.
Key words:  hydrogen      type 316 austenitic stainless steel      nanoindentation      creep      
Received:  21 June 2004     
ZTFLH:  TG111.8  
  TG142.7  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I4/342

[1]Cornet M, Talbat-Besnard S. Suppl Trans JIM, 1980; 21: 545
[2]Gao G Y, Dexter S C. Metall Trans A, 1987; 18A: 1125
[3]Chu W Y, Ding W, Hsiao C M. Ada Metall Sin, 1986; 22: 115 (褚武扬,丁威,肖纪美.金属学报, 1986;22:115)
[4]Gao B, Chu W Y, Qiao L J.Carros Sci, 1994; 36: 1437
[5]Abraham D P, Altstetter C J. Metall Mater Trans A, 1995; 26A: 2849
[6]Birnhaum H K, Sofronis P. Mater Sci Eng, 1994; A176: 191
[7]Chen J, Wang W, Lu L, Lu K. Acta Metall Sin, 2001; 37: 1179 (陈吉,汪伟,卢磊,卢柯.金属学报,2001;37: 1179)
[8]Chudoha T, Richter F. Surf Coat Technol, 2001; 148: 191
[9]Ma X, Yoshida F. Appl Phys Lett, 2003; 82: 188
[10]Feng G, Ngan A H W. Scr Mater, 2001; 45: 971
[11]Yao Y, Qiao L J, Sun D B, Chu W Y. Acta Metall Sin, 2003; 39: 855 (姚远,乔利杰,孙冬柏,褚武扬.金属学报,2003;39:855)
[12]Li W B, Henshall J L, Hovper R M, Easterling K E. Acta Metall Mater, 1991; 39: 3099
[13]Chu W Y, Qiao L J, Chen Q Z, Gao K W. Fracture and Environmental Fracture. Beijing: Science Press, 2000: 112 (褚武扬,乔利杰,陈奇志,高克玮.断裂与环境断裂.北京: 科学出版社,2001:112)
[14]Li J C M, Park C G, Ohr S M. Scr Metall, 1986; 20: B447
[15]Wang Y B, Chu W Y, Hsiao C M. Scr Metall, 1985; 19: 1161
[16]Zhang T Y, Chu W Y, Hsiao C M. Scr Metall, 1986; 20: 225
[17]Birnhanm H K, Sofronis P. Mater Sci Eng, 1994; A176: 191
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[5] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[6] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[7] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[8] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[9] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[10] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[11] XIAO Na, HUI Weijun, ZHANG Yongjian, ZHAO Xiaoli. Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel[J]. 金属学报, 2021, 57(8): 977-988.
[12] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[13] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[14] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[15] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
No Suggested Reading articles found!