Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (4): 337-341     DOI:
Research Articles Current Issue | Archive | Adv Search |
Size Effects On Deformation And Fatigue Behavior Of A Micron-Sized Stainless Steel
ZHANG Guangping;TAKASHIMA Kazuki; HIGO Yakichi
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

ZHANG Guangping; TAKASHIMA Kazuki; HIGO Yakichi. Size Effects On Deformation And Fatigue Behavior Of A Micron-Sized Stainless Steel. Acta Metall Sin, 2005, 41(4): 337-341 .

Download:  PDF(324KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Micron-sized cantilever beams of a 304 stainless steel were fabricated by focused-ion-beam (FIB). The static bending and dynamic bending tests of the microbeams were carried out. The results show that with decreasing the beam thickness, the yield strength of the microbeam increases and the ductility decreases. The relation between the yield strength of the microbeam and beam thickness is similar to the Hall-Petch relation of the grain size strengthening. The increase in the yield strength of the thinner microbeam is attributed to the increase in the strain gradient contribution due to inhomogeneous deformation of the small dimensional material. The decrease in the ductility of the microbeam is attributed to fewer mobile dislocations in the grain. The threshold of the fatigue crack initiation from the notch of the microbeam is close to that of the bulk material.
Key words:  micrometer-scale      deformation      fatigue damage      
Received:  22 June 2004     
ZTFLH:  TG111  
  TG142.71  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I4/337

[1]Fujimasa I. Micromachines-A New Era in Mechanical Engineering, Oxford: Oxferd Science Publications, 2000
[2]Nix W D. Metall Trans, 1989; 20A: 2217
[3]Zhang G P, Takashima K, Shimojo M, Higo Y. Int J Mater Prod Technol, 2001; Suppl.l: 298
[4]Schwaiger R, Kraft O. Scr Mater, 1999; 41: 823
[5]Takashima K, Higo Y, Sugiura S, Shimojo M. Mater Trans, 2001; 42: 68
[6]Zhang G P, Schwaiger R, Volkert C A, Kraft O. Philos Mag Lett, 2003; 83: 477
[7]Zhang G P, Volkert C A, Schwaiger R, Arzt E, Kraft O. J Mater Res, 2005; 20: 201
[8]Takashima K, Maekawa S, Shimojo M, Higo Y, Sugiura S, Pfister B, Swain M V. In: Wu X R, Wang Z G, eds., Proceedings of the 7th International Fatigue Congress, UK Gradley Heath: High Education Press, 1999; Vol Ⅲ: 1871
[9]Zhang G P, Wang Z G, Li G Y. Acta Mater, 1997; 45: 1705
[10]Weihs T P, Hong S, Bravman J C, Nix W D. J Mater Res, 1998; 3: 391
[11]Kelegemur, M. H, Chaki, T. K. Int J Fatigue, 2001; 23: 169
[12]Benjamin D. Metals Handbook: Properties and Selection of Stainless Steels. Ohio. Metals Park: ASM, 1980: 19
[13]Takaki, S, Tanimoto, S, Tokunaga Y. Proceedings of Japan Institute of Metals Symposium. Nagoya, 1984: 162
[14]Lee H J, Zhang P, Bravman J C. Appl Phys Lett, 2004; 84: 915
[15]Gao H J. Scr Mater, 2003; 48: 113
[16]Keller R R, Phelps J M, Read D T. Mater Sci Eng, 1996; A214: 42
[17]Zhang G P, Takashima K, Shimojo M, Higo Y. Mater Lett, 2003; 57: 1555
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[4] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[5] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[6] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[7] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[8] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[9] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[10] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[11] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[12] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[13] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[14] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
[15] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
No Suggested Reading articles found!