|
|
Investigation on deformation induced ferrite (a kind of martensite) transformation above Ae3 temperature in a low carbon steel |
LIU Zhaoxia; LI Dianzhong; QIAO Guiwen |
Institute of Metal Research; The Chinese Academy of Sciences |
|
Cite this article:
LIU Zhaoxia; LI Dianzhong; QIAO Guiwen. Investigation on deformation induced ferrite (a kind of martensite) transformation above Ae3 temperature in a low carbon steel. Acta Metall Sin, 2005, 41(11): 1127-1135 .
|
Abstract A series of unidirectional compression tests of a low carbon steel Q235 were performed on a Gleeble 3500 thermal simulator,and the influences of strain, strain rate and deformation temperature (above the isothermal transformation temperature Ae3 from austenite to ferrite) on deformation induced ferrite transformation (DIFT) have been examined. The microstructure, nanoindentation hardness and the elastic modulus of deformation induced ferrite (DIF) and proeutectoid ferrtie were determined by optical microscope, scanning electron microscope (SEM), X-ray diffraction (XRD) and nanoindentation techniques. The results show that DIFT can take place above Ae3 temperature, the higher the strain rate and the strain, the more favorable for DIFT. When ε=80% and ε=20 s-1, the upper limit temperature of DIFT can be elevated to 945 ℃ (Ae3+98 ℃). An interesting phenomenon is found that when the deformation temperature is between 870-920℃, the total stress is increased with deformation temperature decreasing. However, when deformed between 830-870℃, the total stress is decreased with deformation temperature decreasing. Compared with the diffraction peak of proeutectoid ferrite, the diffraction peak of DIF was shift to a low angle in XRD analysis, and both the nanoindentation hardness and elastic modulus of DIF are much higher than those of proeutectoid ferrite, which proved DIF to be a kind of martensite.
|
Received: 30 June 2005
|
|
[1] Priestner R, Hodgson P D. Mater Sci Technol, 1992; 8: 849 [2] Huang Y D, Yang W Y, Sun Z Q. J Mater Proc Technol, 2003; 134: 19 [3] Hodgson P D, Hickson M R, Gibbs R K. Scr Mater, 1999; 40: 1179 [4] Hurley P J, Hodgson P D, Muddle B C. Scr Mater, 1999; 40: 433 [5] Hurley P J, Hodgson P D. Mater Sci Technol, 2001; 17: 1360 [6] Hickson M R , Hodgson P D. Mater Sci Technol, 1999; 15: 85 [7] Yang P, Fu Y Y, Cui F E, Sun Z Q. Ada Metall Sin, 2001; 37: 900 (杨平,傅云义,崔凤娥,孙祖庆.金属学报,2001;37:900) [8] Qi J J, Yang W Y, Sun Z Q. Acta Metall Sin, 2002; 38: 629 (齐俊杰,杨王玥,孙祖庆.金属学报, 2002;38:629) [9] Hickson M R , Gibbs R K, Hodgson P D. ISIJ Int, 1999;39:1176 [10] Yada H, Matsumura Y. Trans Iron Steel Inst Jpn, 1987;27:492 [11] Matsumura Y, Yada H. Metall Soc Technol Paper, 1986;A86-28:1 [12] Yada H, Li C M, Yamagata H. ISIJ Int, 2000; 40: 200 [13] Mintz B, Lewis J, Jonas J J. Mater Sci Technol, 1997; 13:379 [14] Hurley P J, Hodgson P D. Mater Sci Eng, 2001; 302A:206 [15] Bleck W, Herzig C, Lorenz U. Mater Technol, 2001; 72:406 [16] Yang Z M, Wang R Z. ISIJ Int, 2003; 43: 761 [17] Tong M M, Ni J, Zhang Y T, Li D Z, Li Y Y. Scr Mater,2004; 50: 909 [18] Priestner R, Al-Horr Y M, Ibraheem A K. Mater Sci Technol, 2002; 18: 973 [19] Yang Z M, Zhao Y, Wang R Z, MA Y W, Che Y M. Acta Metall Sin, 2000; 36: 818 (杨忠民,赵燕,王瑞珍,马燕文,车彦民.金属学报,2000; 36:818) [20] Yang Z M, Zhao Y, Wang R Z, Ma Y W, Che Y M, Chen Q A. Acta Metall Sin, 2000; 36: 1061 (杨忠民,赵燕,王瑞珍,马燕文,车彦民,陈其安.金属学 报,2000;36:1061) [21] Liu Z X, Tong M M, Huang C J, Li D Z. Acta Metall Sin, 2004; 40: 930 (刘朝霞,佟铭明,黄成江,李殿中.金属学报,2004;40:930) [22] Li W J, Du L X, Zhang H M, Liu X H, Wang G D. J Iron Steel Res, 2000; 12: 36 (李维娟,杜林秀,张红梅,刘相华,王国栋.钢铁研究学报, 2000;12:36) [23] Amin R K, Pickering F B. Thermomechanical processing of microalloyed austenite , Warrendale, PA: TMS, 1982: 377 [24] Dube A, Aranson H I, Mehl R F. Rev Met, 1958; 55: 201 [25] Massalski T B. Acta Metall, 1958; 6: 243 [26] Xu Z Y. Heat Treatment, 2003; 18: 1 (徐祖耀.热处理,2003;18:1) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|