Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (11): 1127-1135     DOI:
Research Articles Current Issue | Archive | Adv Search |
Investigation on deformation induced ferrite (a kind of martensite) transformation above Ae3 temperature in a low carbon steel
LIU Zhaoxia; LI Dianzhong; QIAO Guiwen
Institute of Metal Research; The Chinese Academy of Sciences
Cite this article: 

LIU Zhaoxia; LI Dianzhong; QIAO Guiwen. Investigation on deformation induced ferrite (a kind of martensite) transformation above Ae3 temperature in a low carbon steel. Acta Metall Sin, 2005, 41(11): 1127-1135 .

Download:  PDF(1144KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A series of unidirectional compression tests of a low carbon steel Q235 were performed on a Gleeble 3500 thermal simulator,and the influences of strain, strain rate and deformation temperature (above the isothermal transformation temperature Ae3 from austenite to ferrite) on deformation induced ferrite transformation (DIFT) have been examined. The microstructure, nanoindentation hardness and the elastic modulus of deformation induced ferrite (DIF) and proeutectoid ferrtie were determined by optical microscope, scanning electron microscope (SEM), X-ray diffraction (XRD) and nanoindentation techniques. The results show that DIFT can take place above Ae3 temperature, the higher the strain rate and the strain, the more favorable for DIFT. When ε=80% and ε=20 s-1, the upper limit temperature of DIFT can be elevated to 945 ℃ (Ae3+98 ℃). An interesting phenomenon is found that when the deformation temperature is between 870-920℃, the total stress is increased with deformation temperature decreasing. However, when deformed between 830-870℃, the total stress is decreased with deformation temperature decreasing. Compared with the diffraction peak of proeutectoid ferrite, the diffraction peak of DIF was shift to a low angle in XRD analysis, and both the nanoindentation hardness and elastic modulus of DIF are much higher than those of proeutectoid ferrite, which proved DIF to be a kind of martensite.
Key words:  deformation induced ferrite transformation      low carbon steel      upper limit temperature           
Received:  30 June 2005     
ZTFLH:  TG113.1  
  TG142.31  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I11/1127

[1] Priestner R, Hodgson P D. Mater Sci Technol, 1992; 8: 849
[2] Huang Y D, Yang W Y, Sun Z Q. J Mater Proc Technol, 2003; 134: 19
[3] Hodgson P D, Hickson M R, Gibbs R K. Scr Mater, 1999; 40: 1179
[4] Hurley P J, Hodgson P D, Muddle B C. Scr Mater, 1999; 40: 433
[5] Hurley P J, Hodgson P D. Mater Sci Technol, 2001; 17: 1360
[6] Hickson M R , Hodgson P D. Mater Sci Technol, 1999; 15: 85
[7] Yang P, Fu Y Y, Cui F E, Sun Z Q. Ada Metall Sin, 2001; 37: 900 (杨平,傅云义,崔凤娥,孙祖庆.金属学报,2001;37:900)
[8] Qi J J, Yang W Y, Sun Z Q. Acta Metall Sin, 2002; 38: 629 (齐俊杰,杨王玥,孙祖庆.金属学报, 2002;38:629)
[9] Hickson M R , Gibbs R K, Hodgson P D. ISIJ Int, 1999;39:1176
[10] Yada H, Matsumura Y. Trans Iron Steel Inst Jpn, 1987;27:492
[11] Matsumura Y, Yada H. Metall Soc Technol Paper, 1986;A86-28:1
[12] Yada H, Li C M, Yamagata H. ISIJ Int, 2000; 40: 200
[13] Mintz B, Lewis J, Jonas J J. Mater Sci Technol, 1997; 13:379
[14] Hurley P J, Hodgson P D. Mater Sci Eng, 2001; 302A:206
[15] Bleck W, Herzig C, Lorenz U. Mater Technol, 2001; 72:406
[16] Yang Z M, Wang R Z. ISIJ Int, 2003; 43: 761
[17] Tong M M, Ni J, Zhang Y T, Li D Z, Li Y Y. Scr Mater,2004; 50: 909
[18] Priestner R, Al-Horr Y M, Ibraheem A K. Mater Sci Technol, 2002; 18: 973
[19] Yang Z M, Zhao Y, Wang R Z, MA Y W, Che Y M. Acta Metall Sin, 2000; 36: 818 (杨忠民,赵燕,王瑞珍,马燕文,车彦民.金属学报,2000; 36:818)
[20] Yang Z M, Zhao Y, Wang R Z, Ma Y W, Che Y M, Chen Q A. Acta Metall Sin, 2000; 36: 1061 (杨忠民,赵燕,王瑞珍,马燕文,车彦民,陈其安.金属学 报,2000;36:1061)
[21] Liu Z X, Tong M M, Huang C J, Li D Z. Acta Metall Sin, 2004; 40: 930 (刘朝霞,佟铭明,黄成江,李殿中.金属学报,2004;40:930)
[22] Li W J, Du L X, Zhang H M, Liu X H, Wang G D. J Iron Steel Res, 2000; 12: 36 (李维娟,杜林秀,张红梅,刘相华,王国栋.钢铁研究学报, 2000;12:36)
[23] Amin R K, Pickering F B. Thermomechanical processing of microalloyed austenite , Warrendale, PA: TMS, 1982: 377
[24] Dube A, Aranson H I, Mehl R F. Rev Met, 1958; 55: 201
[25] Massalski T B. Acta Metall, 1958; 6: 243
[26] Xu Z Y. Heat Treatment, 2003; 18: 1 (徐祖耀.热处理,2003;18:1)
[1] ZHANG Limin, LI Ning, ZHU Longfei, YIN Pengfei, WANG Jianyuan, WU Hongjing. Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing[J]. 金属学报, 2023, 59(12): 1624-1632.
[2] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[3] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[4] LI Dianzhong, WANG Pei. Tailoring Microstructures of Metals[J]. 金属学报, 2023, 59(4): 447-456.
[5] . Interfacial Compatibility Study for Laser Melting Deposition of CoCrNiCu Medium Entropy Alloy on 316L Austenitic Stainless Steel Surface[J]. 金属学报, 0, (): 0-0.
[6] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[7] CHEN Hongyu, SONG Xin, ZHOU Xianglong, JIA Wentao, YUAN Tao, MA Tianyu. Identification of 2:17R' Cell Edge Phase in Sm2Co17-Type Permanent Magnets by Transmission Electron Microscopy[J]. 金属学报, 2021, 57(12): 1637-1644.
[8] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[9] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
[10] CAO Jianghai, HOU Zibing, GUO Zhongao, GUO Dongwei, TANG Ping. Effect of Superheat on Integral Morphology Characteristics of Solidification Structure and Permeability in Bearing Steel Billet[J]. 金属学报, 2021, 57(5): 586-594.
[11] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[12] ZHENG Qiuju, YE Zhongfei, JIANG Hongxiang, LU Ming, ZHANG Lili, ZHAO Jiuzhou. Effect of Micro-Alloying Element La on Solidification Microstructure and Mechanical Properties of Hypoeutectic Al-Si Alloys[J]. 金属学报, 2021, 57(1): 103-110.
[13] LIU Yi, TU Jian, YANG Weihua, YIN Ruisen, TAN Li, HUANG Can, ZHOU Zhiming. Effect of Deformation and Annealing Treatment on Microstructure Evolution of Fe47Mn30Co10Cr10B3 Dual-Phase High-Entropy Alloy[J]. 金属学报, 2020, 56(12): 1569-1580.
[14] ZHANG Yong, LI Xinxu, WEI Kang, WEI Jianhuan, WANG Tao, JIA Chonglin, LI Zhao, MA Zongqing. Element Segregation in GH4169 Superalloy Large-Scale Ingot and Billet Manufactured by Triple-Melting[J]. 金属学报, 2020, 56(8): 1123-1132.
[15] HUA Hanyu,XIE Jun,SHU Delong,HOU Guichen,Naicheng SHENG,YU Jinjiang,CUI Chuanyong,SUN Xiaofeng,ZHOU Yizhou. Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content[J]. 金属学报, 2020, 56(2): 161-170.
No Suggested Reading articles found!