Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (9): 975-980     DOI:
Research Articles Current Issue | Archive | Adv Search |
The Solid-Liquid Interface Morphology of the Unidirectionally Solidified Ni2MnGa Magnetic Shape Memory Alloy
JIANG Chengbao; LIU Jinghua; ZHANG Tao; XU Huibin
School of Materials Science and Engineering; Beijing University of Aeronautics and Astronautics; Beijing 100083
Cite this article: 

JIANG Chengbao; LIU Jinghua; ZHANG Tao; XU Huibin. The Solid-Liquid Interface Morphology of the Unidirectionally Solidified Ni2MnGa Magnetic Shape Memory Alloy. Acta Metall Sin, 2004, 40(9): 975-980 .

Download:  PDF(14897KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The crystals of Ni2MnGa were prepared by high temperature gradient zone-melting unidirectional solidification. Through altering the growth velocity, the temperature gradient and the zone-melting length, a flat solid-liquid interface can be obtained, and a single crystal was successfully prepared. The crystal growth competition was observed in Ni50Mn29Ga21 alloy. No obvious composition macro-segregation was detected. In X-ray diffraction pattern only 400 and 004 peaks of the tetragonal martensitic structure appear, showing the preferred orientation along <100> of the high-temperature cubic austenite Ni2MnGa. DSC and TG methods were applied to describe the distributions of the martensitic transition temperature and Curie temperature along the solidified axis of the Ni50Mn29Ga21, no obvious change for Curie temperature and about 10℃ increase for the martensitic transition temperature were observed, further indicating the homogeneity of the composition along the growth axis.
Key words:  Ni2MnGa      crystal growth      unidirectional solidification      
Received:  28 December 2003     
ZTFLH:  TG111.4  
  TG113.12  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I9/975

[1] O'Handley R C. Appl Phys, 1998; 83: 3263
[2] Wu G H, Yu C H, Meng L Q, Chen J L, Yang F M, Qi S R, Zhan W S, Wang Z, Zheng Y F, Zhao L C. Appl PhysLett, 1999; 75: 2990
[3] Jiang C B, Liang T, Xu H B, Zhang M, Wu G H. ApplPhys Lett, 2002; 81: 1818
[4] Murray S J, Marioni M, Allen S M, O'Handley R C. ApplPhys Lett, 2000; 77: 886
[5] Sozinov A, Likhachev A A, Lanska N, Ullakko K. ApplPhys Lett, 2002; 80: 1746
[6] Schlagel D L, Wu Y L, Zhang W, Lograsso T A. J AlloysCompds, 2000; 312: 77
[7] Pons J, Chernenko V A, Sautamarta R, Cesari E. ActaMater, 2000; 48: 3027
[8] Jiang C B, Feng G, Xu H B. Appl Phys Lett, 2002; 80:1619
[9] Albertini F, Pareti L, Paoluzi A, Morellon L, Algarabel PA, Ibarra M R, Righi L. Appl Phys Lett, 2002; 81: 4032
[10] Straka L, Heczko O, Lanska N. IEEE Trans Magn, 2002;38: 2835
[11] Jiang C B, Muhammad Y, Deng L F, Wu W, Xu H B.Acta Mater, 2004; 52: 2779
[1] YANG Qianqian, LIU Yuan, LI Yanxiang. MODELING AND SIMULATION OF STRUCTURAL FORMATION OF POROUS ALUMINUM IN GASAR SOLIDIFICATION[J]. 金属学报, 2014, 50(11): 1403-1412.
[2] PENG Dongjian, LIN Xin, ZHANG Yunpeng, GUO Xiong, WANG Meng, HUANG Weidong. INVESTIGATION OF EFFECT OF INTERFACE ENERGY ANISOTROPY ON DENDRITIC GROWTH IN UNIDIRECTIONAL SOLIDIFICATION BY FRONT TRACKING SIMULATION[J]. 金属学报, 2013, 49(3): 365-371.
[3] CHEN Liutao ZHANG Huawei LIU Yuan LI Yanxiang. EXPERIMENTAL RESEARCH ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK[J]. 金属学报, 2012, 48(3): 329-333.
[4] CHANG Guowei JIN Guangcan CHEN Shuying LI Qingchun YUE Xudong. STUDY ON LATERAL GROWTH RATE OF PERITECTIC REACTION PRODUCTS[J]. 金属学报, 2011, 47(3): 380-384.
[5] GAN Chunlei LIU Xuefeng HUANG Haiyou XIE Jianxin. FABRICATION PROCESS, MICROSTRUCTURE AND MECHANICAL PROPERTIES OF BFe10–1–1 ALLOY TUBES BY CONTINUOUS UNIDIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2010, 46(12): 1549-1556.
[6] QIAO Junwei ZHANG Yong CHEN Guoliang. SYNTHESIS OF PLASTIC Zr–BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2009, 45(4): 410-414.
[7] WANG Qiang MA Mingzhen ZHANG Xinyu LIU Riping. CRYSTAL GROWTH VELOCITY IN UNDERCOOLED Zr50Cu50 ALLOY MELT[J]. 金属学报, 2008, 44(12): 1415-1418.
[8] MA Tianyu; YAN Mi; WANG Qingwei. Homogeneity of Magnetostriction of Tb--Dy--Fe—Co<110> Oriented Alloy Rod[J]. 金属学报, 2007, 43(7): 688-692 .
[9] Hua-Wei ZHANG. The Critical Processing Conditions for Directional Solidification of Solid/Gas Eutectics[J]. 金属学报, 2007, 43(6): 589-594 .
[10] Hua-Wei ZHANG. Difficulty in Fabricating Lotus-type Porous Al by Gasar Process[J]. 金属学报, 2007, 42(1): 11-16 .
[11] . IN SITU STUDY OF MARTENSITE TRANSFORMATION , PLASTIC DEFORMATION AND CRACK NUCLEATION FOR NI2MNGA FERROMAGNETIC SHAPE MEMORY ALLOY[J]. 金属学报, 2006, 42(8): 810-814 .
[12] LI Tao; CHEN Guang; LIN Xin; HUANG Weidong. MORPHOLOGICAL EVOLUTION OFSOLIDIFICATION MICROSTRUCTURE OF BINARY ALLOY UNDER STIRRING[J]. 金属学报, 2006, 42(6): 577-583 .
[13] . Preparation of high aluminum containing albronze alloy wires by continuous unidirectional solidification[J]. 金属学报, 2006, 42(12): 1243-1247 .
[14] ZHANG Huawei; LI Yanxiang; LIU Yuan. Evaluation of Porosity in Lotus--Type Porous Cu Fabricated with Gasar Process[J]. 金属学报, 2006, 42(11): 1165-1170 .
[15] ZHANG Huawei; LI Yanxiang; LIU Yuan. Gas Pressure Condition for Obtaining Uniform Lotus--Type Porous Structure by Gasar Process[J]. 金属学报, 2006, 42(11): 1171-1176 .
No Suggested Reading articles found!