Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (9): 962-966     DOI:
Research Articles Current Issue | Archive | Adv Search |
Propagation Process of Indentation Cracks in Air and Water Under a Sustained Load for PZT-5 Ferroelectric Ceramics
HUANG Haiyou; CHU Wuyang; SU Yanjing; GAO Kewei; QIAO Lijie
Department of Materials Physics;University of Science and Technology Beijing; Beijing 100083
Cite this article: 

HUANG Haiyou; CHU Wuyang; SU Yanjing; GAO Kewei; QIAO Lijie. Propagation Process of Indentation Cracks in Air and Water Under a Sustained Load for PZT-5 Ferroelectric Ceramics. Acta Metall Sin, 2004, 40(9): 962-966 .

Download:  PDF(8851KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The propagation processes of indentation cracks in air and water under a sustained load for a PZT-5 ferroelectric ceramics have been investigated. The results show that the indentation cracks could propagate in air and water and arrest after about 120 h. As a result, the crack propagation rates and threshold stress intensity factors for crack arrest in air and water were obtained, and revealed anisotropy. The anisotropy of susceptibility to stress corrosion cracking is relative to the anisotropy of the fracture toughness. The fracture toughness of the crack perpendicular to the poling direction is smaller than that parallel to the poling direction, i.e., KcICda/dt. Stress corrosion cracking in water is more susceptible, i.e., da/dt is larger and KISCC is smaller, than that in air.
Key words:  PZT-5 ferroelectric ceramics      air      water      
Received:  16 May 2003     
ZTFLH:  TG111.91  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I9/962

[1] Chen C P, Knapp W J. J Am Ceram Soc, 1977; 60: 87
[2] Ritter J E, Humenik J N. J Mater Sci, 1979; 14: 626
[3] Spearing S M, Zok F W, Evans A G. J Am Ceram Soc,1994; 77: 562
[4] Okabe T, Kido M, Miyahara T. Eng Fract Mech, 1994;48: 1373
[5] Yang W. Mechatronic Reliability. Beijing: Tsinghua University Press, 2001: 9(杨卫.力电失效学.北京:清华大学出版社,2001:9)
[6] Wang Y, Chu W Y, Su Y J, Qiao L J. Mater Sci Eng,2002; B95: 263
[7] Fang F, Yang W. Mater Lett, 2000; 46: 131
[8] Michalske T A, Freiman S W. J Am Ceram Soc, 1983; 66:284
[9] Michalske T A, Banker B C. J Appl Phys, 1984; 56: 2666
[10] Chu W Y. Fracture and Environment Fracture. Beijing:Science Press, 2001: 8(褚武扬.断裂与环境断裂.北京:科学出版社,2001:8)
[1] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[2] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[3] LIN Xiaodong, MA Haibin, REN Qisen, SUN Rongrong, ZHANG Wenhuai, HU Lijuan, LIANG Xue, LI Yifeng, YAO Meiyi. Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments[J]. 金属学报, 2022, 58(12): 1611-1622.
[4] CHENG Weili, GU Xiongjie, CHENG Shiming, CHEN Yuhang, YU Hui, WANG Lifei, WANG Hongxia, LI Hang. Discharge Performance and Electrochemical Behaviors of the Extruded Mg-2Bi-0.5Ca-0.5In Alloy as Anode for Mg-Air Battery[J]. 金属学报, 2021, 57(5): 623-631.
[5] LI Yuxing, LIU Xinghao, WANG Cailin, HU Qihui, WANG Jinghan, MA Hongtao, ZHANG Nan. Research Progress on Corrosion Behavior of Gaseous CO2 Transportation Pipelines Containing Impurities[J]. 金属学报, 2021, 57(3): 283-294.
[6] TAN Jibo, WANG Xiang, WU Xinqiang, HAN En-Hou. Corrosion Fatigue Behavior of 316LN Stainless Steel Hollow Specimen in High-Temperature Pressurized Water[J]. 金属学报, 2021, 57(3): 309-316.
[7] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[8] LI Xiaohui, WANG Jianqiu, HAN En-Hou, GUO Yanjun, ZHENG Hui, YANG Shuangliang. Electrochemistry and In Situ Scratch Behavior of 690 Alloy in Simulated Nuclear Power High Temperature High Pressure Water[J]. 金属学报, 2020, 56(11): 1474-1484.
[9] Mindong CHEN, Fan ZHANG, Zhiyong LIU, Chaohui YANG, Guoqing DING, Xiaogang LI. Galvanic Series of Metals and Effect of Alloy Compositions on Corrosion Resistance in Sanya Seawater[J]. 金属学报, 2018, 54(9): 1311-1321.
[10] Tingting ZHAO, Zhixin KANG, Xiayu MA. Fabricating Superhydrophobic Copper Meshes by One-Step Electrodeposition Method and Its Anti-Corrosion and Oil-Water Separation Abilities[J]. 金属学报, 2018, 54(1): 109-117.
[11] Jianglei ZHU, Qing WANG, Haipeng WANG. Thermophysical Properties and Atomic Distribution of Undercooled Liquid Cu[J]. 金属学报, 2017, 53(8): 1018-1024.
[12] Fenggang LIU,Xin LIN,Kan SONG,Menghua SONG,Yifan HAN,Weidong HUANG. Microstructure and Mechanical Properties of LaserForming Repaired 300M Steel[J]. 金属学报, 2017, 53(3): 325-334.
[13] Jiahui DONG, Lili TAN, Ke YANG. Research of Biodegradable Mg-Based Metals as Bone Graft Substitutes[J]. 金属学报, 2017, 53(10): 1197-1206.
[14] Qingchuan WANG, Bingchun ZHANG, Yibin REN, Ke YANG. Research and Application of Biomedical Nickel-Free Stainless Steels[J]. 金属学报, 2017, 53(10): 1311-1316.
[15] Pengcheng SONG,Wenbo LIU,Lei CHEN,Chi ZHANG,Zhigang YANG. PHASE-FIELD MODELLING OF THE MARTENSITIC TRANSFORMATION IN SHAPE MEMORYALLOY Au30Cu25Zn45[J]. 金属学报, 2016, 52(8): 1000-1008.
No Suggested Reading articles found!