Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (5): 551-554     DOI:
Research Articles Current Issue | Archive | Adv Search |
Powder Coated Route for Production of SiCf / Ti Precursor Fiber
LI Yanhua; SHI Nanlin; ZHANG Dezhi; YANG Rui
Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

LI Yanhua; SHI Nanlin; ZHANG Dezhi; YANG Rui. Powder Coated Route for Production of SiCf / Ti Precursor Fiber. Acta Metall Sin, 2004, 40(5): 551-554 .

Download:  PDF(3089KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In making SiC precursor fiber using a powder coated route, the binder, poly (methyl methacrylate) was used, and the solvent is acetone. The viscosity of the binder was tested by viscometer, and the critical concentration of the binder is 0.03 g/mL. The content of residual substance of the binder at different temperatures and pressures was test by chemical analysis. The volatility kinetics of the binder was also studied. The temperature for the binder decomposition is about 230 ℃, the velocity reaches its maximum at about 350 ℃, and the decomposition completed under 400 ℃. The decomposition and transgression velocities increase when temperature is increased under the same pressure. The transgression velocity reduces when pressure is increased at the same temperature. The process of making uniform precursor was found by a uniformity design method.
Key words:  SiCf/Ti precursor fiber      powder coated route      binder      
Received:  22 May 2003     
ZTFLH:  TG146  
  V257  
  TG113.12  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I5/551

[1] Kotchick D M, Hink R C, Trisler R E. J Compos Mater, 1975; 9:327
[2] Brindley P K, Draper S L, Eldridge J I, Nathal M V, Arnold S M. Metall Mater Trans, 1992; 23A: 2527
[3] Doychak J. J Met, 1992; 44:46
[4] Soboyejo W O, Rabeeh B M. Mater Sci Eng, 1995; A200: 89
[5] Lerch B, Halford G. Mater Sci Eng, 1995; A200:47
[6] Guo Z X, Derby B. Prog Mater Sci, 1995; 39:411
[7] Beeley N R F, Guo Z X. Mater Sci Technol, 2000; 16:862
[8] Liu Y Y, Shi N L, Wang Q J, Zhang G X, Kang Q, Li D. Acta Metall Sin, 1999; 35 (Suppl.1) : 380(刘羽寅,石南林,王青江,张国兴,康强,李东.金属学报,1999;35(增刊1) :380)
[9] Han S F. Non-Newtonian Fluid. Constitutive Equations and Analytic Theory. Beijing: Science Press, 2000:3(韩式方.非牛顿流体本构方程和计算解析理论.北京:科学出版社,2000:3)
[10] Evans J R G, Edirisinghe M J, Wright J K, Crank J. Proc R Soc London, 1991; 432A: 321
[11] Mater S A, Edirisighe M J, Evans J R G, Twizell E H. J Mater Res, 1993; 8:617
[12] Shi Z, Guo Z X, Song J H. Acta Mater, 2002; 50:1937
[13] Song J H, Edirisinghe M J, Evans J R G, Twizell E H. J Mater Res, 1996; 11:830
[1] . Microstructure and Mechanical Properties of As-cast and Laser Powder Bed Fused AlCoCrFeNi2.1 Eutectic High Entropy Alloy[J]. 金属学报, 0, (): 0-0.
[2] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[3] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[4] . The solidification microstructure and wear properties of undercooled Cu-Co/Cu-Co-Fe alloys under a high magnetic field[J]. 金属学报, 0, (): 0-0.
[5] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] . Effects of Overlapping Process on Grain Orientation and Microstructure of  Nickel-Based Single Crystal Superalloy DD491Fabricated by Selective Laser Melting[J]. 金属学报, 0, (): 0-0.
[7] . Hot Deformation Behavior of Ti30Ni50Hf20 High Temperature Shape Memory Alloy[J]. 金属学报, 0, (): 0-0.
[8] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[10] DUAN Huichao, WANG Chunyang, YE Hengqiang, DU Kui. Electron Tomography Analysis on the Structure and Chemical Composition of Nanoporous Metal Surfaces[J]. 金属学报, 2023, 59(10): 1291-1298.
[11] . Simulation of Core-Shell Structures Evolution of Cu-Co Immiscible Alloys[J]. 金属学报, 0, (): 0-0.
[12] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[13] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[14] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[15] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
No Suggested Reading articles found!