Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (5): 518-522     DOI:
Research Articles Current Issue | Archive | Adv Search |
Superplastic Flow Behavior of Zr Base Bulk Metallic Glass in Supercooled Liquid Region
SHEN Jun; WANG Gang; SUN Jianfei;CHEN Demin; XING Dawei; ZHOU Bide
School of Material Science and Engineering; Harbin Institute of Technology; Harbin 150001; Department of Aerospace Engineering; Harbin Engineering University; Harbin 150001
Cite this article: 

SHEN Jun; WANG Gang; SUN Jianfei; CHEN Demin; XING Dawei; ZHOU Bide. Superplastic Flow Behavior of Zr Base Bulk Metallic Glass in Supercooled Liquid Region. Acta Metall Sin, 2004, 40(5): 518-522 .

Download:  PDF(4783KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Isothermal tensile tests of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk metallic glass in supercooled liquid region are carried out at four characteristic temperatures of 616 , 636, 656 and 676 K which are in the vicinity of the end temperature of glass transition. Experimental results indicate that the superplastic flow behaviors of the material, viz., the flow stress and the elongation depend strongly on the testing temperature and tensile rate. The elongation increases firstly and then decreases with increasing rate and the maximum elongation reaches 1625% at 656 K and 5 mm/min. The strain rate sensitivity exponents determined by using Backofen method are 0.25, 0.65 and 0.93 at 636 , 656 and 676 K, respectively. The free volume model is used to interpret the observed superplastic flow behavior.
Key words:  Zr-based bulk metallic glass      supercooled liquid region      superplasticity      
Received:  29 May 2003     
ZTFLH:  TG139.8  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I5/518

[1] Zhang Q S, Guo D Y, Wang A M, Zhang H F, Ding B Z, Hu Z Q. Intermetallics, 2002; 10:1197
[2] Wang W H, Wei Q, Friedrich S. J Mater Sci, 2000; 35: 2291
[3] Jiang S W, Qi M. Res Met Mater, 2003; 29(1) : 44(姜淑文,齐民.金属材料研究,2003;29(1) :44)
[4] Bian Z, Chen G L, He G, Hui X D. Mater Sci Eng, 2001; A316:135
[5] Liu L, Wu Z F, Zhang J. J Alloys Compd, 2002; 339:90
[6] Zhang Y, Ji Y F, Zhao D Q, Wang R J, Pan M X, Dong Y D, Wang W H. Scr Mater, 2001; 44:1107
[7] Kawamura Y, Shibata T, Inoue A, Masumoto T. Scr Mater, 1997; 37: 431.
[8] Kawamura Y, Nakamura T, Kato H, Mano H, Inoue A. Mater Sci Eng, 2001; A304-306:674
[9] Kawamura Y, Nakamura T, Inoue A. Scr Mater, 1998; 39: 301
[10] Nieh T G, Wadsworth J, Liu C T, Ohkubo T, Hirotsu Y. Acta Mater, 2001; 49:2887
[11] Nieh T G, Mukai T, Liu C T. Scr Mater, 1999; 40:1021
[12] Reger-Leonhard A, Heilmaier M, Eckert J. Scr Mater, 2000; 43:459
[13] Johnson W L, Lu J, Demetriou M D. Intermetallics, 2002; 10:1039
[14] Lee K S, Ha T K, Ahn S, Chang Y W. J Non-Cryst Solids, 2003; 317:193
[15] Saotome Y, Hatori T, Zhang T, Inoue A. Mater Sci Eng, 2001; A304-306:716
[16] Saotome Y, Itoh K, Zhang T, Inoue A. Scr Mater, 2001; 44:1541
[17] Wu S D. The Principle of Metal Superplastic Formation. Beijing: National Defense Industry Press, 1997:9(吴诗惇.金属超塑性变形理论.北京;国防工业出版社,1997:9)
[18] Wang W H, Bai H Y, Luo J L, Wang R J, Jin D. Phys Rev, 2000, 62B: 25
[19] Spaepen F. Acta Metall, 1977; 25:407
[20] Beukel V D. Key Eng Mater, 1993; 81-83: 3
[1] LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. 金属学报, 2022, 58(6): 807-815.
[2] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[3] Guangming XIE, Zongyi MA, Peng XUE, Zongan LUO, Guodong WANG. Effects of Tool Rotation Rates on Superplastic Deformation Behavior of Friction Stir Processed Mg-Zn-Y-Zr Alloy[J]. 金属学报, 2018, 54(12): 1745-1755.
[4] Huiyuan WANG, Hang ZHANG, Xinyu XU, Min ZHA, Cheng WANG, Pinkui MA, Zhiping GUAN. Current Research and Future Prospect on Microstructure Stability of Superplastic Light Alloys[J]. 金属学报, 2018, 54(11): 1618-1624.
[5] Chao YANG,Jijie WANG,Zongyi MA,Dingrui NI,Mingjie FU,Xiaohua LI,Yuansong ZENG. FRICTION STIR WELDING AND LOW-TEMPERATURE SUPERPLASTICITY OF 7B04 Al SHEET[J]. 金属学报, 2015, 51(12): 1449-1456.
[6] FU Mingjie, HAN Xiuquan, WU Wei, ZHANG Jianwei. SUPERPLASTICITY RESEARCH OF Ti-23Al-17Nb ALLOY SHEET[J]. 金属学报, 2014, 50(8): 955-961.
[7] MA Pinkui, SONG Yuquan. BINOCULAR STEREO VISION MEASUREMENT RESEARCH FOR SUPERPLASTIC FREE BULGING[J]. 金属学报, 2014, 50(4): 471-478.
[8] GUAN Zhiping, MA Pinkui, SONG Yuquan. ANALYSIS OF FRACTURE DURING SUPERPLASTIC TENSION[J]. 金属学报, 2013, 49(8): 1003-1011.
[9] SHEN Jun, FENG Aihan. RECENT ADVANCES ON MICROSTRUCTURAL CONTROLLING AND HOT FORMING OF Ti2AlNb-BASED ALLOYS[J]. 金属学报, 2013, 49(11): 1286-1294.
[10] HOU Jieshan, ZHOU Lanzhang, GUO Jianting, YUAN Chao. APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR PREDICTION OF SUPERPLASTIC  BEHAVIOUR IN NiAl ALLOYS[J]. 金属学报, 2013, 49(11): 1333-1338.
[11] CAO Furong DING Hua WANG Zhaodong LI Yinglong GUAN Renguo CUI Jianzhong . QUASI–SUPERPLASTICITY AND DEFORMATION MECHANISM OF ULTRALIGHT β SOLID SOLUTION Mg–11Li–3Zn ALLOY[J]. 金属学报, 2012, 48(2): 250-256.
[12] WANG Gang XU Lei WANG Yong ZHENG Zhuo CUI Yuyou YANG Rui. HOT DEFORMATION BEHAVIOR AND MICROSTRUCTURE EVOLUTION OF A HIGH-Nb-CONTAINING TiAl BASED ALLOY[J]. 金属学报, 2011, 47(5): 587-593.
[13] CAO Furong GUAN Renguo DING Hua LI Yinglong ZHOU Ge CUI Jianzhong. DISLOCATION CREEP IN SUPER–LIGHT α SOLID SOLUTION BASE Mg–6Li–3Zn ALLOY[J]. 金属学报, 2010, 46(6): 715-722.
[14] HUANG Caiyun CHEN Qi LIU Lin. FRICTION AND WEAR PROPERTIES OF Ni–FREE Zr–BASED BULK METALLIC GLASSES IN SIMULATED BODY FLUID[J]. 金属学报, 2010, 46(6): 681-686.
[15] ZHANG Han BAI Bingzhe FANG Hongsheng. EFFECT OF PRESTRAIN ON THE SUPERPLASTIC DEFORMATION BEHAVIOR OF LOW-ALLOY HIGH-CARBON STEEL[J]. 金属学报, 2009, 45(9): 1106-1110.
No Suggested Reading articles found!