Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (5): 457-461     DOI:
Research Articles Current Issue | Archive | Adv Search |
A Modified Monte Carlo Method in Grain Growth Simulation
ZHANG Jixiang; GUAN Xiaojun; SUN Sheng
College of Material Science and Engineering; Shandong University; Jinan 250061
Cite this article: 

ZHANG Jixiang; GUAN Xiaojun; SUN Sheng. A Modified Monte Carlo Method in Grain Growth Simulation. Acta Metall Sin, 2004, 40(5): 457-461 .

Download:  PDF(6071KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In order to improve present Monte Carlo methods, method changing the node to optimistical orientation corresponding to the system having the lowest energy was proposed, which ensures the grain boundary moving to its curvature center. The new method avoided re-nucleation, and increased simulation efficiency, and made the simulation process more approaching the physics foundation of grain growth. The results show that the grain growth exponent, n=0.478, is close to its theoretic value, and the topological structure accorded with the normal grain growth of the real material.
Key words:  grain growth      Monte Carlo simulation      grain growth exponent      
Received:  28 March 2003     
ZTFLH:  TG111  
  O189  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I5/457

[1] Mao W M, Zhao X B. Metal Recrystallization and Grain Growth. Beijing: Metallurgical Industry Press, 1994: 321, 226(毛卫民,赵新兵.金属的再结晶和晶粒长大.北京:冶金工业出版社,1994:221,226)
[2] Hillert M. Acta Metall, 1965; 13:227
[3] Bolling G F, Winegard W C. Acta Metall, 1958; 6:283
[4] Drolet J P, Galibois A. Acta Metall, 1968; 16:1387
[5] Gordon P, El-Bassyouni T A. Trans Am Inst Min Eng, 1965; 233:391
[6] Anderson M P, Srolovitz D J, Grest G S, Sahni P S. Acta Metall, 1984; 32:783
[7] Srolovitz D J, Anderson M P, Sahni P S, Grest G S. Acta Metall, 1984; 32:793
[8] Radhakrishnan B, Zacharia T. Metall Mater Trans, 1995; 26A: 167
[9] Liu G Q, Song X Y, Yu H B, Gu N J. Acta Metall Sin, 1999; 35:245(刘国权,宋晓艳,于海波,谷南驹.金属学报,1999;35:245)
[10] Song X Y, Liu G Q. J Mater Sci Technol, 1998; 14:506
[11] GuanX J, Zhou J J, ChenX M, Li Y, Ma J. Heat Treat Met, 2003; 28(2) : 31(关小军,周家娟,陈晓闽,李阳,马璟.金属热处理,2003;28(2) :31)u
[1] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[2] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[3] SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary[J]. 金属学报, 2020, 56(12): 1643-1653.
[4] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[5] Feng LIU, Linke HUANG, Yuzeng CHEN. Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials[J]. 金属学报, 2018, 54(11): 1525-1536.
[6] Yajun HUI,Hui PAN,Wenyuan LI,Kun LIU,Bin CHEN,Yang CUI. Study on Heating Schedule of 1000 MPa Grade Nb-Ti Microalloyed Ultra-High Strength Steel[J]. 金属学报, 2017, 53(2): 129-139.
[7] Jianguo WANG,Dong LIU,Yanhui YANG. MECHANISMS OF NON-UNIFORM MICROSTRUC-TURE EVOLUTION IN GH4169 ALLOYDURING HEATING PROCESS[J]. 金属学报, 2016, 52(6): 707-716.
[8] ZHANG Hang, XU Qingyan, SHI Zhenxue, LIU Baicheng. NUMERICAL SIMULATION OF DENDRITE GRAIN GROWTH OF DD6 SUPERALLOY DURING DIRECTIONAL SOLIDIFICATION PROCESS[J]. 金属学报, 2014, 50(3): 345-354.
[9] ZHOU Deqiang, LIU Xiongjun, WU Yuan, WANG Hui, LV Zhaoping. RECRYSTALLIZATION BEHAVIOR AND ITS INFLU- ENCES ON MECHANICAL PROPERTIES OF AN ALUMINA-FORMING AUSTENITIC STAINLESS STEELS[J]. 金属学报, 2014, 50(10): 1217-1223.
[10] WU Yan, ZONG Yaping,ZHANG Xiangang. MICROSTRUCTURE EVOLUTION OF NANOCRYSTALLINE AZ31 MAGNESIUM ALLOY BY PHASE FIELD SIMULATION[J]. 金属学报, 2013, 49(7): 789-796.
[11] ZHANG Zhuanzhuan WU Chuansong Gao Jinqiang. PREDICTION OF GRAIN GROWTH IN HYBRID WELDING HAZ OF TCS STAINLESS STEEL[J]. 金属学报, 2012, 48(2): 199-204.
[12] ZHOU Guangzhao WANG Yongxin CHEN Zheng. PHASE–FIELD METHOD SIMULATION OF THE EFFECT OF HARD PARTICLES WITH DIFFERENT SHAPES ON TWO–PHASE GRAIN GROWTH[J]. 金属学报, 2012, 48(2): 227-234.
[13] ZHOU Binghai ZHAI Ziqing. STOCHASTIC PROCESS-BASED MODELING METHOD FOR PITTING CORRSION OF Ni-BASED ALLOY 690[J]. 金属学报, 2011, 47(9): 1159-1166.
[14] CHEN Weiye TONG Weiping ZHANG Hui ZHAO Xiang ZUO Liang. TEXTURE EVOLUTION AND GROWTH OF DIFFERENTLY SIZED GRAINS IN IF STEEL DURING ANNEALING[J]. 金属学报, 2010, 46(9): 1055-1060.
[15] FU Liming SHAN Aidang WANG Wei. EFFECT OF Nb SOLUTE DRAG AND NbC PRECIPITATE PINNING ON THE RECRYSTALLIZATION GRAIN GROWTH IN LOW CARBON Nb-MICROACLOYED STEEL[J]. 金属学报, 2010, 46(7): 832-837.
No Suggested Reading articles found!