Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (4): 378-382     DOI:
Research Articles Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND PROPERTIES OF THE HEAT TREATED DS Tb--Dy--Fe ALLOY
JIANG Chengbao; ZHAO Yan; XU Huibin
School of Materials Science and Engineering; Beijing University of Aeronautics and Astronautics; Beijing 100083
Cite this article: 

JIANG Chengbao; ZHAO Yan; XU Huibin. MICROSTRUCTURE AND PROPERTIES OF THE HEAT TREATED DS Tb--Dy--Fe ALLOY. Acta Metall Sin, 2004, 40(4): 378-382 .

Download:  PDF(339KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  <110> oriented rods of a Tb--Dy--Fe magnetostrictive alloy have been successfully prepared by zone melting unidirectional solidification. A homogenization annealing for 4 or 48 h at 900---1100 C has been carried out in a quartz cylinder under Ar protection after pumping to 2X10 -3 Pa. It was found that, after annealing, <110> preferred orientation is unchanged, the net shape pseudo--eutectic rare earth phase trends discontinuous and spheroidal, magnetostriction slightly decreased without pre--stress but increased obviously with pre--stress. An obvious magnetostriction jump effect was observed in the annealed samples. A satisfactory magnetostrictive property of 1950X10 -6 was obtained under 15 MPa pre--stress after 4 h heat treatment. The compressive stresses of the heat--treated samples decrease monotonously with increasing the soaking time. A satisfactory combination of the magnetostriction and mechanical properties was obtained at annealing for 4 h for the <110> oriented Tb--Dy--Fe alloy.
Key words:  Tb--Dy--Fe alloy      magnetostriction           
Received:  16 April 2003     
ZTFLH:  TG113  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I4/378

[1] Clark A E. Ferromagnetic Materials. Vol.1, (North-Holland, Amsterdam, 1980) : 591
[2] Verhoeven J D, Ostenson J E, Gibson E D, McMasters O D. J Appl Phys, 1989; 66: 772
[3] Jiang C B, Zhou S Z, Wang R. Chin J Mater Res, 1998; 12: 482(蒋成保,周寿增,王 润.材料研究学报, 1998;12:482)
[4] Bonino O, Rango P D, Tournier R. J Magn Magn Mater,2000; 212: 225
[5] Zhou S Z, Gao X X, Zhang M C, Zhao Q, Shi Z H. JMater Sci Technol, 2000; 16: 175
[6] Zhao Y, Jiang C B, Zhang H, Xu H B. J Alloys Compds,2003; 354: 263
[7] Verhoeven J D, Bevolo A J, Peterson D T, Baker H H, Mc-Maters O D, Gibson E D. Metallography, 1985; 18: 277A
[1] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[2] ZHANG Limin, LI Ning, ZHU Longfei, YIN Pengfei, WANG Jianyuan, WU Hongjing. Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing[J]. 金属学报, 2023, 59(12): 1624-1632.
[3] . The Mechanism and Damage Model for the Dynamic Tensile Fracture of Liquid Aluminum with He Bubble[J]. 金属学报, 0, (): 0-0.
[4] . Nanoscratching Mechanical Performance of the TiZrHfCuBe High-Entropy Metallic Glass[J]. 金属学报, 0, (): 0-0.
[5] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[7] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[8] .  {111}/{111} Near Singular Boundaries in a Dynamically Recrystallized Al-Zn-Mg-Cu Alloy Compressed at Elevated Temperature[J]. 金属学报, 0, (): 0-0.
[9] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[10] LI Dianzhong, WANG Pei. Tailoring Microstructures of Metals[J]. 金属学报, 2023, 59(4): 447-456.
[11] . Enhancing Tribological Properties in a Refractory High-entropy Alloy via Forming Eutectic Structure[J]. 金属学报, 0, (): 0-0.
[12] . Interfacial Compatibility Study for Laser Melting Deposition of CoCrNiCu Medium Entropy Alloy on 316L Austenitic Stainless Steel Surface[J]. 金属学报, 0, (): 0-0.
[13] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[14] ZHAO Yonghao, MAO Qingzhong. Toughening of Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1385-1398.
[15] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
No Suggested Reading articles found!