Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (2): 123-128    DOI:
Current Issue | Archive | Adv Search |
DISLOCATION CONFIGURATION IN SINGLE CRYSTAL NICKEL-BASE ALLOY DUING PRIMARY CREEP
TIAN Sugui;ZHOU Huihua;ZHANG Jinghua;YANG Hongcai;XU Yongbo;HU Zhuangqi (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Department of Materials Science and Engineering; Northeastern University; Shenyang 110006)(Department of Metal Materials and Engineering; Shenyang Polytechnic University; Shenyang 110023)
Cite this article: 

TIAN Sugui;ZHOU Huihua;ZHANG Jinghua;YANG Hongcai;XU Yongbo;HU Zhuangqi (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Department of Materials Science and Engineering; Northeastern University; Shenyang 110006)(Department of Metal Materials and Engineering; Shenyang Polytechnic University; Shenyang 110023). DISLOCATION CONFIGURATION IN SINGLE CRYSTAL NICKEL-BASE ALLOY DUING PRIMARY CREEP. Acta Metall Sin, 1998, 34(2): 123-128.

Download:  PDF(2807KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The dislocation configuration in a single crystal Ni base alloy with (100) plane parallel to stress axis during primary creep has been investigated by TEM. The results show that the 1/2<110> dislocations are activated on the octahedral slip systems in the 7 matrix channels and multiplied by the dislocation reaction. The dislocations motion must overcome greater resistance and dislocations move in a form of cross-slip and shorter distance, because the normal γ matrix channels of (100) planes are subjected to compression stress. After dislocation loop in tensile stress matrix channels moves into compression stress matrix channels by means of cross-slip, both sides of the dislocation are pinned and it is simillar to the F-R dislocation configuration.
Key words:  single crystal nickel-base superalloy      creep      dislocation     
Received:  18 February 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I2/123

1Tien J K, Copley S M. Metall Trans, 1971; 2: 215
2 Polloch T M, Argon A S. Acta Metall Mater 1994; 42: 1859
3Pollock T M, Argon A S. Acta Metall Mater 1992; 40: 1
4 Zhang J H, Hu Z Q, Xu Y B, Wang Z G. Metall Trans, 1992; 23A: 1253
5 Veron M, Brechet Y. Superalloy, Warrendale PA: AIME 1996: 181
6Tetsuya Ohashi, Kishio Hidalca, Shinya Imano. Acta Mater 1997; 45: 1801
7 Arrell D J, Ralles J L. Scripta Metall Mater, 1994; 30: 149
8 Frank R N, Naborro. Metall Trans, 1996; 27A: 513
9因素贵,张静华,周惠华,杨洪才,徐永波,胡壮麒.金属学报,待发表(Tian Sugui,Zhang Jinghua,Zhou Huihua, Yang Hongcai, Xu Yongbo, Hu Zhnangqi. Acta Metall Sin, to be published)
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[5] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[6] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[7] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[8] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[9] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[10] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[11] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[12] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[13] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[14] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[15] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
No Suggested Reading articles found!