Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (11): 1188-1192    DOI:
Current Issue | Archive | Adv Search |
EFFECTS OF PARTICLE SIZE AND MATRIX STRENGTH ON THE FAILURE MECHANISM OF SiC_p REINFORCED ALUMINIUM MATRIX COMPOSITES
LU Yuxiong;BI Jing;CHEN Liqing;ZHAO Mingjiu (Institute of Metal Research;Chinese Academy of Sciences;Shenyang 110015)
Cite this article: 

LU Yuxiong;BI Jing;CHEN Liqing;ZHAO Mingjiu (Institute of Metal Research;Chinese Academy of Sciences;Shenyang 110015). EFFECTS OF PARTICLE SIZE AND MATRIX STRENGTH ON THE FAILURE MECHANISM OF SiC_p REINFORCED ALUMINIUM MATRIX COMPOSITES. Acta Metall Sin, 1998, 34(11): 1188-1192.

Download:  PDF(1660KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Three different sizes(3.5, 10, 20μm) of SiC particulate and Al-Cu alloy powder were employed to fabricate composites via powder metallurgy technique. The fracture surfaces of the tensile specimen and EDX analysis show that the reinforcement size has a prominent effect on the failure mechanism of the composites. When the reinforcement size exceeds 10 μm, the failure of the MMC results from the SiC.cleavage crack.The breakage is due to the cavity and micro-crack formed by Al-SiC interfacial tearing,however,when the reinforcement size is 3.5 μm. The Al tearing ridge on the SiCp. surface is similar to the conglutination of Al by pulling-out of whisker in SiCw/Al. The tensile test result shows that the MMCs reinforced with small size of particulate has an elevated ultimate tensile strength and elongation. The low strength MMCs, due to their lower matrix strength, has increased plastics and their failure under tensile load is dominated by cavity nucleation, growth and coalescence nearby the SiCp.
Key words:  aluminum matrix composites      powder metallurgy      particle size      matrix strength      failure mechanism     
Received:  18 November 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I11/1188

1 Nutt S R, Duva J M. Scr Metall,1986;20:1055
2 Divecha A P,Fishman S G,Karmaker S D.J Met,1981;33:12
3 McDonels D L.Metall Trans,1985 16A:1105
4 You C P,Thompson A W,Bernstein I M、 Scr Metall;1987;21:181
5 Lloyd D J. Acta Metall Mater 1991; 39: 59
6 Lee J C,Subramanian K N J Mater Sci,1992;27:5453
7 Wang B,Janowski G M,Patterson B R.Metall Mater Trarss,1995;26A:2457
8 Arsenault R J,Shi N,Peng C R,Wang L.Mater,Sci Eng,1991;A131:56
9 Llorca J,Martin A,Ruiz J,Elices M.Metall Trans,1993;24A:1575
10 Lewandowski J J,Liu C,Hunt W H. Mater Set Eng,1989;A107:241
11Mummery P;Derby B.Mater Sci Eng ,1991;A135:221
12 Lloyd D J,Lagace H P,Mcleod A D.In:Ishinda H ed, Proc ICCI-Ⅲ. Amsterdam,Elsevier,1990:359
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[4] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[5] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[6] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[7] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[8] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[9] GUO Lei, GAO Yuan, YE Fuxing, ZHANG Xinmu. CMAS Corrosion Behavior and Protection Method of Thermal Barrier Coatings for Aeroengine[J]. 金属学报, 2021, 57(9): 1184-1198.
[10] ZHOU Hongyu, RAN Minrui, LI Yaqiang, ZHANG Weidong, LIU Junyou, ZHENG Wenyue. Effect of Diamond Particle Size on the Thermal Properties of Diamond/Al Composites for Packaging Substrate[J]. 金属学报, 2021, 57(7): 937-947.
[11] BI Sheng, LI Zechen, SUN Haixia, SONG Baoyong, LIU Zhenyu, XIAO Bolv, MA Zongyi. Microstructure and Mechanical Properties of Carbon Nanotubes-Reinforced 7055Al Composites Fabricated by High-Energy Ball Milling and Powder Metallurgy Processing[J]. 金属学报, 2021, 57(1): 71-81.
[12] HAO Zhibo, GE Changchun, LI Xinggang, TIAN Tian, JIA Chonglin. Effect of Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Powder Metallurgy Superalloy Processed by Selective Laser Melting[J]. 金属学报, 2020, 56(8): 1133-1143.
[13] XU Wei,HUANG Minghao,WANG Jinliang,SHEN Chunguang,ZHANG Tianyu,WANG Chenchong. Review: Relations Between Metastable Austenite and Fatigue Behavior of Steels[J]. 金属学报, 2020, 56(4): 459-475.
[14] ZHANG Guoqing,ZHANG Yiwen,ZHENG Liang,PENG Zichao. Research Progress in Powder Metallurgy Superalloys and Manufacturing Technologies for Aero-Engine Application[J]. 金属学报, 2019, 55(9): 1133-1144.
[15] Zhengguan LU,Jie WU,Lei XU,Xiaoxiao CUI,Rui YANG. Ring Rolling Forming and Properties of Ti2AlNb Special Shaped Ring Prepared by Powder Metallurgy[J]. 金属学报, 2019, 55(6): 729-740.
No Suggested Reading articles found!