Please wait a minute...
Acta Metall Sin  1997, Vol. 33 Issue (3): 292-296    DOI:
Current Issue | Archive | Adv Search |
DEFORMATION AND FRACTURE OF TWO-PHASE TiAl BASE ALLOY WITH A LAMELLAR STRUCTURE AT ROOM TEMPERATURE
LIANG Wei;LI Qiang;YANG Dezhuang (Harbin Institute of Technologli; Harbin 150001)(Taiyuan University of Technology; Taiyuan 030024)
Cite this article: 

LIANG Wei;LI Qiang;YANG Dezhuang (Harbin Institute of Technologli; Harbin 150001)(Taiyuan University of Technology; Taiyuan 030024). DEFORMATION AND FRACTURE OF TWO-PHASE TiAl BASE ALLOY WITH A LAMELLAR STRUCTURE AT ROOM TEMPERATURE. Acta Metall Sin, 1997, 33(3): 292-296.

Download:  PDF(1982KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In situ TEM tensile experiments show that the principal reason for the poor ductility at room temperature of TiAl base alloys with lamellar structure is the lack of slip systems, eventhough (1/2)<110] ordinary dislocations exhibit good mobility and (1/6)<112] deformation twinning is activited in some γ-lamella phase. The key to improve the room temperature ductility of TiAl base alloy is to operate other slip systems apart from (1/2)<110]{111).
Key words:  TiAl base alloy      γ-lamella phase      deformation      fracture     
Received:  18 March 1997     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1997/V33/I3/292

1 Greenberg B A, Antonova O V, Indenbaum V N, Karkina L E, Notkin A B,Ponomarev M V,Smirnov L V Acta Metall Mater,1991;39:233
2 Moms M A. Philos Mag,1993;68A;237
3 Inui H, Nakamura A, Oh M H, Yamaguchi M.Philos Mag,1992;66A:557
4 Liang W,Li Q,Yang D Z.Acta Metall Sin(Eng Lett),1996;9:272
5 Meng X K,Liu Z G,Liu Y,Frommeyer G.Scr Metall Mater,1995;32:1331
6 InuiH,Oh M H,Nakamura A,Yamaguchi M.Acla Metall Mater,1992;40:3095
7梁伟,李强,刘会亭,杨德庄.金属学报,1996;32:154
8 Ohr S M,Chang S J J Appl Phys,1982;53:5645
9 Mises V R.Z Angrw Math Mechg,1928;8:161
10 May I L.Prmciples of Mechanical Metellurgy.New York:Am Elsevier,1981:124
11 Kelly A.Strong Solids.New York:Oxford Univ Press,1966:82
12梁伟,刘会亭,陆路,杨德庄,李强,康五星.金属热处理学报,1995;16(3):15
13 Dieter G E.Mechanical Metallurgy.New York:McGraw-Hill,1976:192
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[3] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[4] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[7] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[8] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[9] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[10] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[11] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[12] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[13] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[14] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[15] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
No Suggested Reading articles found!