Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (9): 904-912    DOI:
Current Issue | Archive | Adv Search |
SHEAR PROCESS OF FERROUS MARTENSITES
ZUO Rulin; ZHOU Shouze; DING Peidao (Department of Metallurgy and Materials Engineering; Chongqing University; Chongqing 630044)
Cite this article: 

ZUO Rulin; ZHOU Shouze; DING Peidao (Department of Metallurgy and Materials Engineering; Chongqing University; Chongqing 630044). SHEAR PROCESS OF FERROUS MARTENSITES. Acta Metall Sin, 1996, 32(9): 904-912.

Download:  PDF(598KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A dislocation model of ferrous martensite nucleation and growth was proposed by means of the K-S orientation relationship of martensitic transformation, and the mathematical formulas of martensitic shear process were derived. These formulas might remedy some defects of phenomenological theory of martensitic transformation. A new crystalline geometry explanation was advanced for martensitic substructures(twins and dislocations) in steels.
Key words:  ferrous      martensite      crystallography      substructure      dislocation     
Received:  18 September 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I9/904

1WechslerMS,LiebermanDS.ReadT.A.TransAIME.1953;197:15032BowlesJS,MackenzieJK.ActaMetall,1954;2:1293MackenzieJK,BowlesJS.ActaMetall.1954;2:1184BowlesJS,MackenzieJK.AciaMetull.1954;2:2245BreedisJE,WagmanCM.TransMetSocAIME.1962;224:11286KellyPM.NuttingJ.ProcRSocLondon,1960,259A:457KellyPM.NuttingJ.JIronSteelInstLondon,1961.197:1998SpeichGR.SwannPR.JIronSteelInstLondon,1965;203:4809NishiyamaZ.ShimizuK.ActaMetall,1959,7:43210NishiamaZ.ShimizuK.ActaMetall.1961;9:98011ShimizuK,NishiyamaZ.MetallTrans1972;3:105512SandvikBPJ.WaymanCM.MetallTrans.1983;3:80913DasSK,ThomasG.MetallTrans.1970;1:32514ThomasG,DasSK.JIronSteelInstLondon,1971;80115BogersAJ,BurgersWG.ActaMetall.1964;12:25516OlsonGB,CohenM.AnnRevMaterSci,1981;11:117蒋生蕊.金属学报,1986;22:A39318蒋生蕊.金属学报,1988;24(Suppl.):A4019ChristianJW.TheTheoryofTransformationsinMetalsandAllovs,PergamonPress,1965:5920徐祖耀.相变原理.北京:科学出版社,1988:43221郭可信,叶恒强,吴玉琨.电子衍射图.北京:科学出版社,1983:L278
[1] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[2] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[3] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[4] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[5] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[6] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[7] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[8] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[9] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[10] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[11] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[12] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[13] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[14] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[15] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
No Suggested Reading articles found!