Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (6): 629-636    DOI:
Current Issue | Archive | Adv Search |
KINETICS AND MATHEMATICAL MODEL FOR REDUCTION PROCESS OF IRON ORE BRIQUETTE CONTAINING CARBON
HUANG Dianbing; YANG Xuemin; YANG Tianjun; KONG Lingtan (University of Science and Technology Beijing; Beijing 100083)
Cite this article: 

HUANG Dianbing; YANG Xuemin; YANG Tianjun; KONG Lingtan (University of Science and Technology Beijing; Beijing 100083). KINETICS AND MATHEMATICAL MODEL FOR REDUCTION PROCESS OF IRON ORE BRIQUETTE CONTAINING CARBON. Acta Metall Sin, 1996, 32(6): 629-636.

Download:  PDF(526KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The reduction process of iron ore briquette containing C(ICB) was investigated under different conditions in nitrogen atmosphere. It was found that the reduction rate in the center part of ICB was faster than that in the rim. According to this phenomenon, it can be believed that the solid reaction of Fe_xOy+yC =xFe+yCO is not the main reduction process and the previous model described process could not explain the real process exactly. In this paper, a new opinion on the reduction process was put forward and a new mathematical model was established for ICB reduction process. It was proved by experiments that the new model fits the reduction process quite well.
Key words:  mathematical model      kinetics      iron ore      carbon     
Received:  18 June 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I6/629

1YaoYK.MetallTrans,1971;2:14392McKeanWM.TransMetallSocAIME,1963;219:2193KawasakiE,SanscrainteJ,WalshTJ.AIchEJ,1962,8:484YaoYK.ChemEngSci1974;29:14355SihnHY,ChaubalPC.TransIronSteelInstJpn,1984;24:3876HuangDianbing,KongLingtan,LinZongcai.ActaMetallSin(EngEd),1994;7:577HuangDianbing,KongLingtan.10thProcessTechnologyConferenceProceedings,1992:4098于定年.钢铁,1985;5:489WilkeCR.ChemEngProg,1950;46:9510HuangDianbing,KongLingtan,LinZongcai,ActaMetallSin(EngEd)1993;68:227:
[1] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[2] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[3] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[4] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[5] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[6] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[7] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[8] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[9] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[10] GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. 金属学报, 2022, 58(6): 799-806.
[11] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[12] ZHOU Cheng, ZHAO Tan, YE Qibin, TIAN Yong, WANG Zhaodong, GAO Xiuhua. Effects of Tempering Temperature on Microstructure and Low-Temperature Toughness of 1000 MPa Grade NiCrMoV Low Carbon Alloyed Steel[J]. 金属学报, 2022, 58(12): 1557-1569.
[13] LIU Yuwei, GU Tianzhen, WANG Zhenyao, WANG Chuan, CAO Gongwang. Corrosion Behavior of Q235 and Q450NQR1 Exposed to Marine Atmospheric Environment in Nansha, China for 34 Months[J]. 金属学报, 2022, 58(12): 1623-1632.
[14] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
[15] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
No Suggested Reading articles found!