Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (10): 1044-1048    DOI:
Current Issue | Archive | Adv Search |
FRACTURE MECHANISMS OF FFL MICROSTRUCTURE IN TiAl ALLOY
ZHANG Ji;ZHANG Zhihong;ZOU Dunxu;ZHONG Zengyong(Central Iron and Steel Research Institute;Ministry of Metallurgical Industry;Beijing 100081)(Manuscript received 1995-12-25)(Department 5;Central Iron and Steel Research Institute;MMI;BeiJing 100081)
Cite this article: 

ZHANG Ji;ZHANG Zhihong;ZOU Dunxu;ZHONG Zengyong(Central Iron and Steel Research Institute;Ministry of Metallurgical Industry;Beijing 100081)(Manuscript received 1995-12-25)(Department 5;Central Iron and Steel Research Institute;MMI;BeiJing 100081). FRACTURE MECHANISMS OF FFL MICROSTRUCTURE IN TiAl ALLOY. Acta Metall Sin, 1996, 32(10): 1044-1048.

Download:  PDF(431KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The observations of the crack morpholgies on the side faces and fracture surfaces of the fracture toughness specimens and the TEM analyses of deformed structure around crack were conducted for the FFL microstructure which was obtained from the cast Ti-46.5 Al-2.5V-1.0Cr-0.2Ni(atomic fraction,%) alloy by a designed multiple heat treatment.The fracture characterizations of the FFL microstructure are similar to that of the FL microstructures.The functions of each shear ligment and total deformed volume accompanying the crack in the FFL microstructure were much smaller due to the significant decrease of the lamellar colony size.This led to a descent of fracture toughness of the FFL microstructure compared to the general FL microstructure.
Key words:  TiAl alloy      FFL microstructure      fracture mechanism.     
Received:  18 October 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I10/1044

1师昌绪.金属世界,1995;(1):52KimY-W,DimidukDM.JOM,1991;43(8):403ChanKS,KimY-W.MetallMaterTrans,1994:25A:12174ChanKS.MetallMaterTrans,1995;26A:14075KimY-W.JOM,1994;46(7):306ZhangJ,ZouDX,WangY,ZhangZY.In:KimSW,ParkSJeds.,Proc3rdIUMRSIntConfinAsia,Vol.1,Seoul:MaterialsResearchSocietyofKorea1995:4037ChanKS.MetallTrans,1993:24A:5698张继,石建东,邹敦叙,仲增墉.金属学报,1995;31(增刊):S5229SoboyejoWO,SchwartzDS,SastrySML.MetallTrans,1992;23A:203910InuiH,OhMH,NakamuraA,YamaguchiM.ActaMetallMater,1992;40:3095
[1] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[2] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[3] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[4] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[5] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[6] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[7] Zhanxing CHEN,Hongsheng DING,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Microstructural Evolution and Mechanism of Solidified TiAl Alloy Applied Electric Current Pulse[J]. 金属学报, 2019, 55(5): 611-618.
[8] Yimin LIAO, Min FENG, Minghui CHEN, Zhe GENG, Yang LIU, Fuhui WANG, Shenglong ZHU. Comparative Study of Hot Corrosion Behavior of theEnamel Based Composite Coatings and the ArcIon Plating NiCrAlY on TiAl Alloy[J]. 金属学报, 2019, 55(2): 229-237.
[9] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[10] Yu PAN, Xin LU, Chengcheng LIU, Jianzhuo SUN, Jianbo TONG, Wei XU, Xuanhui QU. Effect of Sn Addition on Densification and Mechanical Properties of Sintered TiAl Base Alloys[J]. 金属学报, 2018, 54(1): 93-99.
[11] Tianrui LI, Guohuai LIU, Mang XU, Hongzhi NIU, Tianliang FU, Zhaodong WANG, Guodong WANG. Microstructures and High Temperature Tensile Properties of Ti-43Al-4Nb-1.5Mo Alloy in the Canned Forging andHeat Treatment Process[J]. 金属学报, 2017, 53(9): 1055-1064.
[12] Zhanxing CHEN,Hongsheng DING,Shiqiu LIU,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Effects of Direct Current on Microstructure and Properties of Ti-48Al-2Cr-2Nb Alloy[J]. 金属学报, 2017, 53(5): 583-591.
[13] Gang WANG,Lei XU,Yuyou CUI,Rui YANG. DENSIFICATION MECHANISM OF TiAl PRE-ALLOY POWDERS CONSOLIDATED BY HOT ISOSTATIC PRESSING AND EFFECTS OF HEAT TREATMENTON THE MICROSTRUCTURE OF TiAl POWDER COMPACTS[J]. 金属学报, 2016, 52(9): 1079-1088.
[14] Liang YANG,Shubo GAO,Yanli WANG,Teng YE,Lin SONG,Junpin LIN. EFFECT OF Si ADDITION ON THE MICROSTRUCTURE AND ROOM TEMPERATURE TENSILE PROPERTIES OF HIGH Nb-TiAl ALLOY[J]. 金属学报, 2015, 51(7): 859-865.
[15] ZHOU Huan, ZHANG Tiebang, WU Zeen, HU Rui, KOU Hongchao, LI Jinshan. FORMATION AND EVOLUTION OF PRECIPITATE IN TiAl ALLOY WITH ADDITION OF INTERSTITIAL CARBON ATOM[J]. 金属学报, 2014, 50(7): 832-838.
No Suggested Reading articles found!