Please wait a minute...
Acta Metall Sin  1995, Vol. 31 Issue (8): 333-339    DOI:
Current Issue | Archive | Adv Search |
CHARACTER OF THERMALLY ACTIVATED MOTION OF ATOMS RELATED TO THE DUCTILE-BRITTLE TRANSITION OF AMORPHOUS ALLOYS
CHE Xiaozhou; HU Gengxiang(Shanghai Jiaotong University;Shanghai 200030);CAO Xingguo(Luoyang Institute of Technology;Luoyang 471039);DAI Lizhi (TAI Lichi)(Central Iron Steel Research Institute;Ministry of Metallurgical Industry;Beijing 100081)
Cite this article: 

CHE Xiaozhou; HU Gengxiang(Shanghai Jiaotong University;Shanghai 200030);CAO Xingguo(Luoyang Institute of Technology;Luoyang 471039);DAI Lizhi (TAI Lichi)(Central Iron Steel Research Institute;Ministry of Metallurgical Industry;Beijing 100081). CHARACTER OF THERMALLY ACTIVATED MOTION OF ATOMS RELATED TO THE DUCTILE-BRITTLE TRANSITION OF AMORPHOUS ALLOYS. Acta Metall Sin, 1995, 31(8): 333-339.

Download:  PDF(456KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Through the determination of the values of activation energy for embrittlement under isothermal and isochronal conditions.the correlation between the ductile-brittle transition and thermally activated motion of atoms of the amorphous alloys in annealing has been revealed. And the character of thermally activated motion of atoms related to the embrittlement has been described. The matching of the values of activation energy for embrittlement determined under different conditions demonstrates that the potential barriers existed in the ductile-brittle transitions of the amorphous alloys in both isothermal and isochronal anneals are the same,and verifies the close relationship between annealing embrittlement and the thermally activated motion of atoms. The continued increase of activation energy for embrittlement during the brittling process and the correspondence of activation energy values with different transition stages characterize the ductile-brittle transition of amorphous alloys,so the transition is not the simple activating process with a constant activation energy.CHE Xiaozhou,post doctor, Shanghai Jiaotong University,Shanghai 200030
Key words:  amorphous alloy      annealing embrittlement      activation energy     
Received:  18 August 1995     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1995/V31/I8/333

1YamasakiT,TakahashiM,OginoY.In:SteebS,WarlimontHeds.,RapidlyQuenchedMetals,Amsterdam:ElesvierSciencePublishers,1984:13812CaoXingguo,LiJCM.ActaMetal,1985;33(3):4993ChiGC,ChenHS,MillerCE.JApplPhys,1978;49(3):17154车晓舟,曹兴国,戴礼智.机械工程材料,1993;17(4):175LuborskyFE,WalterJL.JApplPhys,1976;47(8):36486YamasakiT,OginoY,HondaT,AmemiyaY.ScriptaMetall,1989;23(11):19637LiJCM.MaterSciEng,1988;98:4658DavisLA,DasSK,LiJCM,ZedalisMS.InternationalJournalofRapidSolidification,1994;8(2):73
[1] LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. 金属学报, 2022, 58(6): 807-815.
[2] LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys[J]. 金属学报, 2022, 58(4): 457-472.
[3] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[4] HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. 金属学报, 2022, 58(10): 1316-1324.
[5] HU Xiang, GE Jiacheng, LIU Sinan, FU Shu, WU Zhenduo, FENG Tao, LIU Dong, WANG Xunli, LAN Si. Combustion Mechanism of Fe-Nb-B-Y Amorphous Alloys with an Anomalous Exothermic Phenomenon[J]. 金属学报, 2021, 57(4): 542-552.
[6] LIU Riping, MA Mingzhen, ZHANG Xinyu. New Development of Research on Casting of Bulk Amorphous Alloys[J]. 金属学报, 2021, 57(4): 515-528.
[7] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[8] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[9] GENG Yaoxiang, WANG Yingmin. Local Structure-Property Correlation of Fe-Based Amorphous Alloys: Based on Minor Alloying Research[J]. 金属学报, 2020, 56(11): 1558-1568.
[10] XU Xiuyue, LI Yanhui, ZHANG Wei. Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties[J]. 金属学报, 2020, 56(10): 1393-1400.
[11] JIN Chenri, YANG Suyuan, DENG Xueyuan, WANG Yangwei, CHENG Xingwang. Effect of Nano-Crystallization on Dynamic Compressive Property of Zr-Based Amorphous Alloy[J]. 金属学报, 2019, 55(12): 1561-1568.
[12] Shubo LI, Wenbo DU, Xudong WANG, Ke LIU, Zhaohui WANG. Effect of Zr Addition on the Grain Refinement Mechanism of Mg-Gd-Er Alloys[J]. 金属学报, 2018, 54(6): 911-917.
[13] Hongyang XU,Haibo KE,Huogen HUANG,Pei ZHANG,Pengguo ZHANG,Tianwei LIU. Nanoindentation Creep Behavior of U65Fe30Al5 Amorphous Alloy[J]. 金属学报, 2017, 53(7): 817-823.
[14] Dianguo MA,Yingmin WANG,Kunio YUBUTA,Yanhui LI,Wei ZHANG. Effect of Co Content on the Structure and Magnetic Properties of Melt-Spun Fe55-xCoxPt15B30 Alloys[J]. 金属学报, 2017, 53(5): 609-614.
[15] Huogen HUANG,Hongyang XU,Pengguo ZHANG,Yingmin WANG,Haibo KE,Pei ZHANG,Tianwei LIU. U-Cr Binary Alloys with Anomalous Glass-Forming Ability[J]. 金属学报, 2017, 53(2): 233-238.
No Suggested Reading articles found!