Please wait a minute...
Acta Metall Sin  1995, Vol. 31 Issue (4): 183-190    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF MICROSTRUCTURE ON FATIGUE CRACK GROWTH OF Ti_3Al-Nb ALLOYS
AI Suhua;GUAN Shaoxuan(State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy; of Sciences; Shenyang 110015).FENG Zemin; GE Jingyan(Northeastern University; Shenyang 110006)
Cite this article: 

AI Suhua;GUAN Shaoxuan(State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy; of Sciences; Shenyang 110015).FENG Zemin; GE Jingyan(Northeastern University; Shenyang 110006). EFFECT OF MICROSTRUCTURE ON FATIGUE CRACK GROWTH OF Ti_3Al-Nb ALLOYS. Acta Metall Sin, 1995, 31(4): 183-190.

Download:  PDF(689KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  篢he room temperature fatigue crack growth rates fo the Ti3Al-Nb-Mo-Valloys with different microstructures by 3 regimes of heat treatment have been determined. The volume fraction of primary α2-phase,grain sizes of matrix, morphology of β-transformation products and static yield strength are the major factors influential in both the fatigue threshold and fatigue crack growth rate of the alloy. The effect of stress ratio on da / dN is consistent with that on the conventional materials. According to observations of SEM fractographs together with the fatigue crack growth rate measurements, a brief discussion on the fatigue crack propagation behaviour was made.
Key words:  intermetallic compound      fatigue crack growth      strees intensity factor      stress ratio     
Received:  18 April 1995     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1995/V31/I4/183

1LipsittHA,ShechtmanD,SchafrikR.MetallTrnas,1980;11A:13692YangWJS.JMaterSciLett,1982;1:1993LiuCT,StieglerJOReprintSeries9,ICTH,TriesteItaly,1984;226:6364KhataceA,FlowerHM,WestDRF.JMaterEng,1988;10:375StrychorR,WilliamsJC,SoffaWA.MetallTrans,1988;19A:225 6WittennauerJ,BassiC,Walser B.ScrMetall,1989;23:13817AswathP B,SureshS.MetallTrans,1991:22A:8178RaoKTV,OdetteG R,RichieR O.ActaMetall1992;40:3539张 鹰,李学明,高 扬.材料工程,1992;4:2210ChaveRA,BeeversCJ,BowenP.In:BailonJB,DicksonJIeds.,Fatigue'93,1993;2:100711GaoH,BrownMW,MillerKJ.Fatigue EngMater Struct,1982;5:112ElberW.Eng FracMech,1970,2:3713SureshS.FatigueofMaterialsCambridgeUniversityPress,199114SwainMV,KimNJ.In:KishiT,TakedaN,Kagawa Y eds.,Proc3rdIntSAMPE,Japan,1993:1519
[1] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[2] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[3] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[4] Hua JI,Yunlai DENG,Hongyong XU,Weiqiang GUO,Jianfeng DENG,Shitong FAN. The Influence of Welding Line Energy on the Microstructure and Property of CMT Overlap Joint of 5182-Oand HC260YD+Z[J]. 金属学报, 2019, 55(3): 376-388.
[5] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
[6] CAO Lihua, CHEN Yinbo, SHI Qiyuan, YUAN Jie, LIU Zhiquan. Effects of Alloy Elements on the Interfacial Microstructure and Shear Strength of Sn-Ag-Cu Solder[J]. 金属学报, 2019, 55(12): 1606-1614.
[7] HE Xianmei, TONG Liuniu, GAO Cheng, WANG Yichao. Effect of Nd Content on the Structure and Magnetic Properties of Si(111)/Cr/Nd-Co/Cr Thin Films Prepared by Magnetron Sputtering[J]. 金属学报, 2019, 55(10): 1349-1358.
[8] Min ZHANG, Erlong MU, Xiaowei WANG, Ting HAN, Hailong LUO. Microstructure and Mechanical Property of the Welding Joint of TA1/Cu/ X65 Trimetallic Sheets[J]. 金属学报, 2018, 54(7): 1068-1076.
[9] Huijun KANG, Jinling LI, Tongmin WANG, Jingjie GUO. Growth Behavior of Primary Intermetallic Phases and Mechanical Properties for Directionally Solidified Al-Mn-Be Alloy[J]. 金属学报, 2018, 54(5): 809-823.
[10] Ning ZHAO,Jianfeng DENG,Yi ZHONG,Luqiao YIN. Evolution of Interfacial Intermetallic Compounds in Ni/Sn-xCu/Ni Micro Solder Joints Under Thermomigration During Soldering[J]. 金属学报, 2017, 53(7): 861-868.
[11] Zhijie ZHANG,Mingliang HUANG. Liquid-Solid Electromigration Behavior of Cu/Sn-52In/Cu Micro-Interconnect[J]. 金属学报, 2017, 53(5): 592-600.
[12] Dawei WANG,Shichao XIU. Effect of Bonding Temperature on the Interfacial Micro-structure and Performance of Mild Steel/Austenite Stainless Steel Diffusion-Bonded Joint[J]. 金属学报, 2017, 53(5): 567-574.
[13] Chao XU, Qiliang NAI, Zhihao YAO, He JIANG, Jianxin DONG. Grain Boundary Oxidation Effect of GH4738 Superalloy on Fatigue Crack Growth[J]. 金属学报, 2017, 53(11): 1453-1460.
[14] Zongyue BI,Jun YANG,Haizhang LIU,Wanpeng ZHANG,Yaobin YANG,Lei TIAN,Xiaojiang HUANG. INVESTIGATION ON THE WELDING PROCESS AND MICROSTRUCTURE AND MECHANICAL PROPERTY OF BUTT JOINTS OF TA1/X65 CLAD PLATES[J]. 金属学报, 2016, 52(8): 1017-1024.
[15] Xiaolong LIU,Chengqi SUN,Yantian ZHOU,Youshi HONG. EFFECTS OF MICROSTRUCTURE AND STRESS RATIO ON HIGH-CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY[J]. 金属学报, 2016, 52(8): 923-930.
No Suggested Reading articles found!