Please wait a minute...
Acta Metall Sin  1994, Vol. 30 Issue (8): 337-343    DOI:
Current Issue | Archive | Adv Search |
CARBON ORDERING IN Fe-C MARTENSITE Ⅱ. Crystal Structure of Long-Period Ordered Phase
REN Xiaobing; Xiaotian(Xi'an Jiaotong University); SHIMIZU Ken'ichi(Kanazawa Institute of Technology;Japan) TADAKI Tsugio(Osaka University; Japan)
Cite this article: 

REN Xiaobing; Xiaotian(Xi'an Jiaotong University); SHIMIZU Ken'ichi(Kanazawa Institute of Technology;Japan) TADAKI Tsugio(Osaka University; Japan). CARBON ORDERING IN Fe-C MARTENSITE Ⅱ. Crystal Structure of Long-Period Ordered Phase. Acta Metall Sin, 1994, 30(8): 337-343.

Download:  PDF(475KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Split superlattice reflections are detected in Fe-1 .83C martensite aged at room temperature, indicating the existence of long-period ordered phase. The long-period phase is superperiod of 10 c_M(c_M being the length of c axis of martensite), it is named as γ′-FexC(Ⅱ). For the first time it is found that the superperiod of this long-period phase increases with the increase of temperature, but does not change with aging time. It is also found that the superperiod calculated from the split distance of superlattice spots is not an integral multiple of C_M This is an indication of the coexistence of three long-period ordered phases with superperiod of 10 c_M 12 and 14 c_M, respectively, the interference of diffraction beams from them results in the non-integrality of the split distance of superlattice spots.The calculated intensities of the superlattice reflections are in good agreement with experimental observations. It is suggested that the existence of long-period ordered phase is a result of minimization of lattice distortion energy. The relationship betweenγ′-FexC(Ⅰ) and γ′-Fex C(Ⅱ) is also discussed.
Key words:  Fe-C martensite      aging      long-period ordered phase      ordering     
Received:  18 August 1994     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1994/V30/I8/337

1NagakuraS,ToyoshimaM.TransJpnInstMet,1974;15:1292NagakuraS,HirotsuY,KusunokiM,NakaimuraYMetallTrans,1983;14A:10253TanakaY,ShimizuKTransJpnInstMet,1981;22:7794TaylorKA,ChangL,OlsonGB,SmithGDW,CohenM,VanderSandeJB.MetallTrans,1989;20A:27175UwakwehONC,GeninJMR,SilvainJGMetallTrans22A:7976OlsonCB,TaylorKA,CohenM.MetallTrans1990;21A:28067任晓兵,王笑天,清水谦一,唯木次男.金属学报,1994:30:A2968任晓兵,王笑天,清水谦一,唯木次男,金属学报,1994,30.A2899JohannsonCH,LindeJOAnnPhys,1936;25:110FujiwaraKJPhysSocJpn.1957,12:711OgawaSIn:WarlimountHedProcIntSymponOrder-DisorderTransformationsinAlloys,1974:24012YakelHLJApplPhys1962,13:243913GanguleeA,MossSC.JApplCrystallogr,1968;1:61
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[3] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[4] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[5] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[6] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[7] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[8] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[9] GENG Yaoxiang, TANG Hao, XU Junhua, ZHANG Zhijie, YU Lihua, JU Hongbo, JIANG Le, JIAN Jianglin. Formability and Mechanical Properties of High-Strength Al-(Mn, Mg)-(Sc, Zr) Alloy Produced by Selective Laser Melting[J]. 金属学报, 2022, 58(8): 1044-1054.
[10] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[11] REN Ping, CHEN Xingpin, WANG Cunyu, YU Feng, CAO Wenquan. Effects of Pre-Strain and Two-Step Aging on Microstructure and Mechanical Properties of Fe-30Mn-11Al-1.2C Austenitic Low-Density Steel[J]. 金属学报, 2022, 58(6): 771-780.
[12] CHEN Shenghu, RONG Lijian. Oxide Scale Formation on Ultrafine-Grained Ferritic-Martensitic Steel During Pre-Oxidation and Its Effect on the Corrosion Performance in Stagnant Liquid Pb-Bi Eutectic[J]. 金属学报, 2021, 57(8): 989-999.
[13] ZHOU Hongyu, RAN Minrui, LI Yaqiang, ZHANG Weidong, LIU Junyou, ZHENG Wenyue. Effect of Diamond Particle Size on the Thermal Properties of Diamond/Al Composites for Packaging Substrate[J]. 金属学报, 2021, 57(7): 937-947.
[14] ZHU Shize, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. Influence of Cu Content on the Negative Effect of Natural Aging in SiC/Al-Mg-Si-Cu Composites[J]. 金属学报, 2021, 57(7): 928-936.
[15] CHEN Junzhou, LV Liangxing, ZHEN Liang, DAI Shenglong. Precipitation Strengthening Model of AA 7055 Aluminium Alloy[J]. 金属学报, 2021, 57(3): 353-362.
No Suggested Reading articles found!