Please wait a minute...
Acta Metall Sin  1993, Vol. 29 Issue (6): 82-87    DOI:
Current Issue | Archive | Adv Search |
INFLUENCES OF APPLIED POTENTIALS AND LOADING WAVEFORM ON FATIGUE CRACK GROWTH FOR STEEL A537
WANG Zhengfu;KE Wei Corrosion Science Laboratory; Institute of Corrosion and Protection of Metals; Academia Sinica; ShenyangLINJin;Institute of Corrosion and Protection of Metals;Academia Sinica;Shenyang 110015
Cite this article: 

WANG Zhengfu;KE Wei Corrosion Science Laboratory; Institute of Corrosion and Protection of Metals; Academia Sinica; ShenyangLINJin;Institute of Corrosion and Protection of Metals;Academia Sinica;Shenyang 110015. INFLUENCES OF APPLIED POTENTIALS AND LOADING WAVEFORM ON FATIGUE CRACK GROWTH FOR STEEL A537. Acta Metall Sin, 1993, 29(6): 82-87.

Download:  PDF(505KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Influences of applied potentials and loading waveform on the fatigue crackgrowth for steel A537 in 3.5%NaCl solution, and corresponding straining electrode behaviourhave been studied. Under the applied potentials over or below-800 mV (SCE), the anodicdissolution or the hydrogen embrittlement is predominant, respectively. For applied anodicpotential, the acceleration effect of continuous loading pattern on the CF crack growth main-ly appeared at the range of low △K values, while for cathodic potential, it appeared at therange of high △K values. The continuous straining causes a decrease of natural potential andan increase of anodic dissolution current.
Key words:  corrosion fatigue      steel A537      waveform      potential      straining electrode     
Received:  18 June 1993     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1993/V29/I6/82

1 Barson J M. J Eng Fract Mech. 1971; 3: 15
2 Achilles R D, Bulloch J H. Int J Pres Ves piping 1987; 30: 375
3 Saxena A, Liaw P K, Landes J D. Mat Sci Engng. 1987; 95: 137
4 Patel C, Pyle P, Rollins V. Matal Science. June, 1977; 185
5 Haor T P, Ford F P. J Electrochem Soc, 1973; 120: 1013
6 Wang Z F, Zhu Z M, Ke W. Metall Trans, 1992; 23A: 3337
7 Wang M, Hardie D. Proc Conf Hydrogen and Marerials, Beijing, Published by Institut Superieur des metaux et de la Construction Mecanique, 1988; 900
[1] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[2] TAN Jibo, WANG Xiang, WU Xinqiang, HAN En-Hou. Corrosion Fatigue Behavior of 316LN Stainless Steel Hollow Specimen in High-Temperature Pressurized Water[J]. 金属学报, 2021, 57(3): 309-316.
[3] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[4] DUAN Lingjie,LIU Yongchang. Relationships Between Elastic Constants and EAM/FS Potential Functions for Cubic Crystals[J]. 金属学报, 2020, 56(1): 112-118.
[5] Chao CAI,Yang LI,Jinfeng LI,Zhao ZHANG,Jianqing ZHANG. Correlation Between Ageing Precipitation, Potential and Intergranular Corrosion of 2A97 Al-Li Alloy Sheet[J]. 金属学报, 2019, 55(8): 958-966.
[6] Rongyao MA, Lin ZHAO, Changgang WANG, Xin MU, Xin WEI, Junhua DONG, Wei KE. Influence of Hydrostatic Pressure on the Thermodynamics and Kinetics of Metal Corrosion[J]. 金属学报, 2019, 55(2): 281-290.
[7] Jianfeng ZHANG, Qing LAN, Qichi LE. Investigation on the Change of Thermoelectric Power of Al-Fe Hypoeutectic Alloy Melt Caused by AC Magnetic Field[J]. 金属学报, 2018, 54(7): 1042-1050.
[8] Zhao CHENG, Shuai JIN, Lei LU. Effect of Electrolyte Temperature on Microstructures of Direct-Current Electrodeposited Nanotwinned Cu[J]. 金属学报, 2018, 54(3): 428-434.
[9] Lin ZHAO, Xin MU, Junhua DONG, Liping WU, Changgang WANG, Wei KE. Study on the Galvanic Current of Corrosion Behavior for AH32 Long-Scale Specimen in Simulated Tidal Zone[J]. 金属学报, 2017, 53(11): 1445-1452.
[10] Zhiyong LIU,Zongshu LI,Xiaolin ZHAN,Wenzhu HUANGFU,Cuiwei DU,Xiaogang LI. GROWTH BEHAVIOR AND MECHANISM OF STRESS CORROSION CRACKS OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION[J]. 金属学报, 2016, 52(8): 965-972.
[11] WU Xinqiang, TAN Jibo, XU Song, HAN En-Hou, KE Wei. CORROSION FATIGUE MECHANISM OF NUCLEAR-GRADE LOW ALLOY STEEL IN HIGH TEMPERATURE PRESSURIZED WATER AND ITS ENVIRONMENTAL FATIGUE DESIGN MODEL[J]. 金属学报, 2015, 51(3): 298-306.
[12] MU Xin, WEI Jie, DONG Junhua, KE Wei. THE EFFECT OF SACRIFICIAL ANODE ON CORRO- SION PROTECTION OF Q235B STEEL IN SIMULATED TIDAL ZONE[J]. 金属学报, 2014, 50(11): 1294-1304.
[13] ZHANG Zhipeng, LEI Mingkai. EFFECTIVE PAIR INTERACTION POTENTIAL OF INTERSTITIAL ATOMS IN METAL[J]. 金属学报, 2014, 50(1): 103-109.
[14] ZHANG Litao,WANG Jianqiu. STRESS CORROSION CRACK PROPAGATION BEHAVIOR OF DOMESTIC FORGED NUCLEAR GRADE 316L STAINLESS STEEL IN HIGH TEMPERATURE AND HIGH PRESSURE WATER[J]. 金属学报, 2013, 49(8): 911-916.
[15] FAN Lin, LIU Zhiyong, DU Cuiwei, LI Xiaogang. RELATIONSHIP BETWEEN HIGH pH STRESS CORROSION CRACKING MECHANISMS AND APPLIED POTENTIALS OF X80 PIPELINE STEEL[J]. 金属学报, 2013, 49(6): 689-698.
No Suggested Reading articles found!