Please wait a minute...
Acta Metall Sin  1991, Vol. 27 Issue (1): 7-10    DOI:
Current Issue | Archive | Adv Search |
INTERNAL FRICTIONS OF MARTENSITIC TRANSFORMATION AND PRECIPITATION IN Mn-Cu ALLOY
ZHANG Zhifang;ZHANG Zhidong;YUAN Fang;WANG Yening Loboratory of Solid State Microstructures; Nanjing University
Cite this article: 

ZHANG Zhifang;ZHANG Zhidong;YUAN Fang;WANG Yening Loboratory of Solid State Microstructures; Nanjing University. INTERNAL FRICTIONS OF MARTENSITIC TRANSFORMATION AND PRECIPITATION IN Mn-Cu ALLOY. Acta Metall Sin, 1991, 27(1): 7-10.

Download:  PDF(355KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The internal friction was measured as a function of temperature inMn-7.2wt-%Cu and Mn-10wt-%Cu alloys at -100-400℃ by inverted torsionpendulum. The well known peaks at -40℃ and 160℃ are caused by twin boundaryrelaxation and martensitic transformation respectively. The new peak at 40℃is associated with the martensitic phase transformation in the poor Mn region, whichwas frmed by spinodal decomposition. The relaxation peak at 200℃ is attributed toα-Mn precipitate. The activation energy of the peak is 1.1 eV. The relaxation peakat 340℃ occurred only after aging under vacuum at 430℃. The peak height increas-ed through aging. The activation energy is 1.47 eV. The peak is supposed to relateto spinodal decomposition in which the Cu-rich region formed.
Key words:  internal friction      spinodal decomposition      precipitaion      relaxation peak     
Received:  18 January 1991     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1991/V27/I1/7

1 王力田,葛庭燧.金属学报,1988;24:A147
2 谢存毅,文亦汀,朱贤方.金属学报,1988;24:A71
3 Zaaraoui Z, Bouquet G, Dubois B. J Phys (Paris), 1983; 44 (C9) :259
4 Stokes H J, Hewin I D. J Inst Met, 1960--61; 89: 77
5 Numakura H Koiwa M. Trans Jpn Inst Met, 1985; 26: 653
6 Wang Yening, Gu Min, Sun Linhai. J Phys: Condens Matter, 1989; 1(50) : 10039
7 Miner R E, Wilson T L, Jackson J K. TMS AIME, 1969; 245: 1375
8 Cannelli G, Mazzolai F M. Nuovo Cimento, 1969; LXIVB: 171
9 Vitek J M, Warlimont H. Met Sci, 1976; 10: 7
[1] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[2] Baojun ZHAO,Yuhong ZHAO,Yuanyang SUN,Wenkui YANG,Hua HOU. Effect of Mn Composition on the Nanometer Cu-Rich Phase of Fe-Cu-Mn Alloy by Phase Field Method[J]. 金属学报, 2019, 55(5): 593-600.
[3] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
[4] Jianxue LIU, Wenjun XI, Neng LI, Shujie LI. Effect of Interfacial Energy on Distribution of Nanoparticle in the Melt During the Preparation of Fe-Based ODS Alloys by Thermite Reaction[J]. 金属学报, 2017, 53(8): 1011-1017.
[5] LI Weijuan, ZHANG Hengyi, FU Hao, ZHANG Jianping, QI Xiangyu. INTERNAL FRICTION STUDY OF MECHANISM OF BAKE-HARDENING ON LOW CARBON STEEL[J]. 金属学报, 2015, 51(4): 385-392.
[6] WANG Xing, XI Wenjun, CUI Yue, LI Shujie. MICROSTRUCTURE EVOLUTION MECHANISM AND MECHANICAL PROPERTIES OF FeNiCrAl ALLOY REINFORCED BY COHERENT NiAl SYNTHE- SIZED BY THERMITE PROCESS[J]. 金属学报, 2015, 51(4): 483-491.
[7] ZHENG Kai, WANG Yanli, LI Shilei, LU Xuming, WANG Xitao, XUE Fei. THE MICROSTRUCTURE AND TENSILE FRACTURE BEHAVIOR OF LONG TERM THERMAL AGED Z3CN20-09M STAINLESS STEEL[J]. 金属学报, 2013, 49(2): 175-180.
[8] WANG Hua SHI Wen HE Yanlin FU Renyu LI Lin. STUDY OF Mn AND P SOLUTE DISTRIBUTIONS AND THEIR EFFECT ON THE TENSILE BEHAVIOR IN ULTRA LOW CARBON BAKE HARDENING STEELS[J]. 金属学报, 2011, 47(3): 263-268.
[9] XU Zuyao (T.Y.HSU). STRENTHENING MECHANISM OF MODULATED STRUCTURE INITIATED BY SPINODAL DECOMPOSITION[J]. 金属学报, 2011, 47(1): 1-6.
[10] GAO Yingjun LUO Zhirong ZHANG Shaoyi HUANG Chuanggao . PHASE–FIELD SIMULATION OF SOLUTE PRECIPITATIONS AROUND THE  γ PHASE IN Al–Ag ALLOY[J]. 金属学报, 2010, 46(12): 1473-1480.
[11] WU Jie CUI Hongzhi CHI Jing YAO Shuyu HAN Fusheng. INTERNAL FRICTION PEAK IN B2 Fe--Al ALLOYS DURING ORDERING PROCESS[J]. 金属学报, 2009, 45(4): 396-399.
[12] Jian ZHANG. EFFECTS OF GRAIN-BOUNDARY PHASES ON HYDROGEN EMBRITTLEMENT OF FE-NI-CR AUSTENITIC ALLOY BY INTERNAL FRICTION[J]. 金属学报, 2008, 44(9): 1095-1098 .
[13] SUN Wei. The internal friction peak correlated to the relaxation of Al antisite atoms in Fe-Al alloys[J]. 金属学报, 2007, 43(3): 311-314 .
[14] ;. The nanocrystalline structures of Fe-Ni-P-B alloy solidified at large undercooling and the liquid Spinonal decomposition of alloy melt[J]. 金属学报, 2006, 42(8): 870-874 .
[15] WANG Hongbin; WANG Xiaoyu; ZHANG Jihua; XU Zuyao T. Y. Hsu. Internal Friction of Nano--Grained Fe--25\%Ni Alloy Bulk[J]. 金属学报, 2004, 40(5): 523-526 .
No Suggested Reading articles found!