Please wait a minute...
Acta Metall Sin  1990, Vol. 26 Issue (3): 30-34    DOI:
Current Issue | Archive | Adv Search |
INVESTIGATION OF RANGE PARAMETERS IN METAL AND ALLOY
WANG Dening;WANG Weiyuan Ion implantation Laboratory; Shanghai Institute of Metallurgy; Academia Sinica associate ptofessor;Laboratory No.6;Shanghai Institute of Metallurgy;Academia Sinica; Shanghai 200050
Cite this article: 

WANG Dening;WANG Weiyuan Ion implantation Laboratory; Shanghai Institute of Metallurgy; Academia Sinica associate ptofessor;Laboratory No.6;Shanghai Institute of Metallurgy;Academia Sinica; Shanghai 200050. INVESTIGATION OF RANGE PARAMETERS IN METAL AND ALLOY. Acta Metall Sin, 1990, 26(3): 30-34.

Download:  PDF(424KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The formulas to calculate the electronic stopping power, S_c(E), forheavy ion implanting into metal have been developed by using the Wigner-Sietz ra-dius, equivaleni charge, Fermi velocity and Ziegler's values of hydrogen electronicstopping power. The results calculated are believed to be in agreement with thosemeasured experimentally in previous literature. The formulas to evaluate S_c(E) foralloy, boride containing or CsCl structure have been also derived. However, theseare favourable to only mono-or bi-borides, but not for borides with complex struc-ture such as Cr_5B_3 or W_2B_5. The coefficient of S_c(E) for alloy of CsCl structuredeviating from Bragg's S_c(E) is directly proportional to charge transfer in alloy.The larger the charge transferis, the stronger the metallic bond is. Hence, theS_c(E) created by metallic bond in alloy will be increased; there is a tendency forit to increase with increasing separation of two components in alloy on either sideof Cr group at same periods; and the tendency is larger when the two componentsare in different periods.
Key words:  metal      alloy      range parameter      stopping power     
Received:  18 March 1990     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1990/V26/I3/30

1 Anderson H H, Ziegler J F. Hydrogen Stopping Power and Range in all Element, Vol. III, New York: Pergamon, 1977: 1
2 Anderson H H, Ziegler J F. Helium Stopping Power and Range in all Element. Vol. IV, New York: Pergamon, 1978: 1
3 Beck P A. Electronic Structure and Alloy Chemistty of the Transition Element, New York: Interscience, 1982: 139
4 Brandt W, Kitagawa. Phys Rev, 1982; B25: 5631
S Gibbons J F. Project Range Statistics in Semiconductors, 2nd ed, New York: Halstead Press, 1975: 30
6 Biersack J P, Eckstein W. Appl Phys, 1984; A34: 73
7 Oen O S, Holmes D K, Robinson M T. J Appl Phys, 1963; 34: 302
8 Lindhard J, Scharff M, Schiφtt H E. Mat Fys Medd Dan Vid Solsk, 1964; 34 (4) : 1
9 Neuwirth W, Pietsch W, Richter K, Hauser U. Z Phys, 1975; A275: 215
10 Neuwirth W, Pietsch W, Richter K, Hauser U. Z Phys, 1975; A275: 209
11 Alonso J A, Girifalco L A. J Phys Chem Solids, 1978; 39: 79b
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[6] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[7] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[8] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[9] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[10] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[11] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[12] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[13] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[14] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[15] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
No Suggested Reading articles found!