Please wait a minute...
Acta Metall Sin  1988, Vol. 24 Issue (2): 218-220    DOI:
Current Issue | Archive | Adv Search |
AN IMPROVED METHOD FOR CALCULATING DIFFUSIVITY OF HYDROGEN
YANG Ke Insittute of Metal rescarch;Academia Sinica;Shenyang;XIAN Aiping;CAO Mingzhou;WAN Xiaojing Institute of Metal Research; Academia Sinica; Shenyang
Cite this article: 

YANG Ke Insittute of Metal rescarch;Academia Sinica;Shenyang;XIAN Aiping;CAO Mingzhou;WAN Xiaojing Institute of Metal Research; Academia Sinica; Shenyang. AN IMPROVED METHOD FOR CALCULATING DIFFUSIVITY OF HYDROGEN. Acta Metall Sin, 1988, 24(2): 218-220.

Download:  PDF(259KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  An improved calculating method has been developed to determine the diffusivityof hydrogen in lattice of metals through electrochemical permeation experiment. By employingthis method the hydrogen trapping effect can be eliminated completely and the diffusivity canbe measured more accurately. The permiation experiment of Armoc Fe was performed and thediffusivity of hydrogen in the lattice of α-Fe between 290K and 350K has been given asD_0=5.12×10~(-8)exp(-4320/RT) (m~2/s)
Key words:  diffusivity      hydrogen      electrochemical permeation      armoc Fe      hydrogen trapping     
Received:  18 February 1988     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1988/V24/I2/218

1 Devanathan M A V, Stachurski Z. Proc R Soc, 1962; A270: 90
2 Chaudhari B S, Radhakrishnan T P. Surf Tech, 1984; 22; 353
3 山川宏二,鹤田孝雄,吉沢四郎.防食技术,1981;30:443
4 Beck W, Bockris J O'M, McBreen J, Naris L. Proc R Soc, 1966; A290: 220
5 Hagi H. Hayashi Y, Ohtani N. Trans Jpn Inst Met, 1979; 20: 349
6 Asano S. Hara K, Nakai Y. Ohtani N. J Jpn Inst Met, 1974; 38: 626
7 Nagano M, Hayashi Y, Ohtani N, Isshiki M, gaki K. Trans Jpn Inst Met, 1981; 22: 423
8 Nagano M, Hayashi Y, Ohtani N, Isshiki M, Igaki K. Scr Metall. 1982; 16: 973
9 Gibala R. Trans Metall Soc AIME. 1967; 239: 1574
10 Bernstem I M. Scr Metall, 1974; 8: 343
[1] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[2] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[3] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[4] XIAO Na, HUI Weijun, ZHANG Yongjian, ZHAO Xiaoli. Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel[J]. 金属学报, 2021, 57(8): 977-988.
[5] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[6] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[7] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[8] LI Jinxu,WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels[J]. 金属学报, 2020, 56(4): 444-458.
[9] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[10] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[11] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[12] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[13] Yuping QIU, Hao DAI, Hongbin DAI, Ping WANG. Tuning Surface Composition of Ni-Pt/CeO2 Catalyst for Hydrogen Generation from Hydrous Hydrazine Decomposition[J]. 金属学报, 2018, 54(9): 1289-1296.
[14] Dan LI, Yang LI, Rongsheng CHEN, Hongwei NI. Direct Synthesis of NiCo2O4 Nanoneedles and MoS2 Nanoflakes Grown on 316L Stainless Steel Meshes by Two Step Hydrothermal Method for HER[J]. 金属学报, 2018, 54(8): 1179-1186.
[15] Xiaoli ZHAO, Yongjian ZHANG, Chengwei SHAO, Weijun HUI, Han DONG. Hydrogen Embrittlement of Intercritically AnnealedCold-Rolled 0.1C-5Mn Steel[J]. 金属学报, 2018, 54(7): 1031-1041.
No Suggested Reading articles found!