Please wait a minute...
Acta Metall Sin  1988, Vol. 24 Issue (2): 214-217    DOI:
Current Issue | Archive | Adv Search |
WETTING OF GRAPHITE BY LIQUID ALUMINIUM
JIANG Wenbiao Department of Matericls Science and Engineering;Nanjing Institute of Technology;Nanjing;LIU Youpeng;SHU Guangji Nanjing Institute of Technology
Cite this article: 

JIANG Wenbiao Department of Matericls Science and Engineering;Nanjing Institute of Technology;Nanjing;LIU Youpeng;SHU Guangji Nanjing Institute of Technology. WETTING OF GRAPHITE BY LIQUID ALUMINIUM. Acta Metall Sin, 1988, 24(2): 214-217.

Download:  PDF(1568KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The wetting of graphite by liquid aluminium was studied by sessile drop method.The results show that in accordance with the variation of contact angle with time, the wettingprocess may be divided into three dynamic stages: nonwetting, abrupt change and gradual wetting.At the first stage, the contact angle between drop surface covered by aluminium oxide film andgraphite substrate was very large; while at the last stage, the formation of Al_4C_3 at the interfaceof aluminium and graphite led to the decrease of contact angle gradually. The transition pointfrom the second stage to the last one is defined as the "actual contact angle" by the authors,which can be used as an exact indication of wettability. By increasing the temperature, the wet-ting of graphite by liquid aluminium may be improved.
Key words:  aluminium-graphite composite      wetting      contact angle      interface      reaction     
Received:  18 February 1988     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1988/V24/I2/214

1 Jackson P W. Met Eng Q, 1969; 3: 22
2 Polakovic A, Sebo P, Ivan J, Augustinicova Z. Ultrasonics, 1978; 9: 210
3 Eustathopoulos N, Joud J C, Desre P. J Mater Sci, 1974; 9: 1233
4 Brewer L, Searcy A W. J Am Chem Soc, 1951; 73: 5380
5 Gaskell D R. Introduction to Metallurgical Thermodynamics, New York: Hemisphere Publishing Corporation, 1973: 497
6 #12
7 Rhee S K. J Am Ceram Soc, 1970; 53: 386
8 Manning C R, Gurganus T B. J Am Ceram Soc, 1969; 52: 115|
[1] WANG Furong, ZHANG Yongmei, BAI Guoning, GUO Qingwei, ZHAO Yuhong. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. 金属学报, 2023, 59(6): 812-820.
[2] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[3] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[4] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[6] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[7] SONG Qingzhong, QIAN Kun, SHU Lei, CHEN Bo, MA Yingche, LIU Kui. Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories[J]. 金属学报, 2022, 58(7): 868-882.
[8] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[9] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[10] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[11] HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. 金属学报, 2021, 57(9): 1199-1214.
[12] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[13] LIU Yue, TANG Pengzheng, YANG Kunming, SHEN Yiming, WU Zhongguang, FAN Tongxiang. Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials[J]. 金属学报, 2021, 57(2): 150-170.
[14] WANG Chao, ZHANG Xu, WANG Yumin, YANG Qing, YANG Lina, ZHANG Guoxing, WU Ying, KONG Xu, YANG Rui. Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites[J]. 金属学报, 2020, 56(9): 1275-1285.
[15] WANG Shihong, LI Jian, CHAI Feng, LUO Xiaobing, YANG Caifu, SU Hang. Influence of Solution Temperature on γε Transformation and Damping Capacity of Fe-19Mn Alloy[J]. 金属学报, 2020, 56(9): 1217-1226.
No Suggested Reading articles found!