Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (4): 431-438    DOI: 10.3724/SP.J.1037.2013.00754
Current Issue | Archive | Adv Search |
EFFECT OF ALLOYING ELEMENT Al ON HARDENABILITITY AND MECHANICAL PROPERTIES OF MICRO-B TREATED ULTRA-HEAVY PLATE STEELS
PAN Tao(), WANG Xiaoyong, SU Hang, YANG Caifu
Division of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081
Cite this article: 

PAN Tao, WANG Xiaoyong, SU Hang, YANG Caifu. EFFECT OF ALLOYING ELEMENT Al ON HARDENABILITITY AND MECHANICAL PROPERTIES OF MICRO-B TREATED ULTRA-HEAVY PLATE STEELS. Acta Metall Sin, 2014, 50(4): 431-438.

Download:  HTML  PDF(4008KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Utilizing Jominy end quenching test, chemical phase analysis and thermo-dynamical calculation, study of the effect of alloying elements on hardenability and mechanical properties of a B-bearing ultra-heavy plate steel was carried out. The results showed that small amount of Ti addition could form TiN for its much higher bonding ability than B, fixing N element and thus making B free. Normal Al content failed to prevent BN from precipitating due to the weaker competition for N than B. However, when Al content was increased as high as 0.07%, the competition of Al for N was distinctly improved, making solid-solution B increased. For proper chemical combination of B and N-fixing element, hardenability was increased and accordingly both microstructure and mechanical properties were improved so that the quantity and size of martensite/austenite (M/A) islands and granular bainite were decreased markedly, and low-temperature impact toughness and tensile properties were improved by a large degree. The calculation was in a good accord with experimental results.

Key words:  ultra-heavy plate      hardenability      BN      granular bainite      AlN      thermo-dynamical calculation     
Received:  21 November 2013     
ZTFLH:  TG142.1  
Fund: Supported by National Key Technology R&D Program (No.2011BAE25B01)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00754     OR     https://www.ams.org.cn/EN/Y2014/V50/I4/431

No. Cr* V Al Ti B
1 0.4 - 0.025 - -
2 - 0.06 0.031 - -
3 - - 0.042 - 0.0009
4 - - 0.070 - 0.0007
5 - - 0.027 0.015 0.0010
表1  实验钢的化学成分
Fig.1  

实验钢的末端淬火淬透性曲线

Fig.2  

高冷速条件下2号实验钢的显微组织

Fig.3  

1.5 ℃/s冷速条件下实验钢的显微组织

Fig.4  

低冷速条件下实验钢TEM像和衍射花样

Fig.5  

实验钢的力学性能随淬火冷速的变化

Fig.6  

含Ti钢的析出曲线及Ti(C, N)的固N比例

Fig.7  

含Ti钢中的TiN析出物形貌和其在冲击载荷作用下的破碎形貌以及能谱图

Fig.8  

实验钢中V, Al, B元素与N的竞争关系

Fig.9  

不同Al含量对AlN和BN析出的影响

Fig.10  

900 ℃时不同N含量下固溶B质量分数与Al含量的关系

Fig.11  

含B实验钢的相分析结果

Fig.12  

实验钢的屈强比与冷速的关系

[1] Li R P, Xie Y H, Shu Z. China Offshore Platform, 2003; 18(3): 1
(李润培, 谢永和, 舒 志. 中国海洋平台, 2003;18(3): 1)
[2] Di G B, Liu Z Y, Hao L Q, Liu X H. Mater Mech Eng, 2008; 32(8): 1
(狄国标, 刘振宇, 郝利强, 刘相华. 机械工程材料, 2008; 32(8): 1)
[3] Otani K, Muroka H, Tsuruta S, Hattori K, Kawazoe H. Nippon Steel Technol Rep, 1993; 58: 1
[4] Sharp J V, Binlingham J, Stacey A. Marine Struct, 1999; 12: 349
[5] Taylor K A. ISS Trans, 1993; 14: 7
[6] Zhang Y Q, Zhang R J, Su H, Li L. Iron Steel, 2003; 38(11): 45
(张永权, 张荣久, 苏 航, 李 丽. 钢铁, 2003; 38(11): 45)
[7] Gao Y F. PTCA (Part A: Physical Testing), 2000; 36: 442
(高玉芳. 理化检验-物理分册, 2000; 36: 442)
[8] Izeki Y, Saiki K, Saiki K, Nakamura M, Ohtani H, Watanabe S. Sumitomo Search, 1976; 15(5): 27
[9] Iwasaki N, Tagawa H, Watanabe I, Yamada M, Nagamine T, Endo G. Nippon Kokan Technical Report Overseas, 1980; 30: 1
[10] Takizawa K, Kaji H, Yano K, Okano S. Shinko Steel Technical Report, 1987; 3: 79
[11] Chen A Z, Niu J C, Deng W P. Develop Appl Mater, 2010; (1): 9
(陈爱志, 牛继承, 邓晚平. 材料开发与应用, 2010; (1): 9)
[12] Saiga Y. ISIJ Int, 1989; 29: 799
[13] Chen Z, Wu X C, Wang H B, Min Y A, Zhang H K. J Iron Steel Res, 2008; 20(10): 40
(陈 卓, 吴晓春, 汪宏斌, 闵永安, 张洪奎. 钢铁研究学报, 2008; 20(10): 40)
[14] Pan T, Wang X Y, Wang H, Li Y, Su H, Yang C F. J Iron Steel Res Int, 2011<br/>(suppl): 242
[15] Watanabe S, Ohtani H, Kunitaki T. Trans ISIJ, 1983; 23: 120
[16] Paju M. Iron Steel, 1992; 19: 495
[17] Habu R, Miyata M, Tamukai S, Sekino S. Trans ISIJ, 1983; 23: 176
[18] Shen Y, Hansen S S. Metall Mater Trans, 1997; 28A: 2027
[19] Cias W W. Metall Trans, 1973; 4: 603
[20] Tomita Y, Okabayashi K. Metall Trans, 1986; 7A: 1203
[21] Luo Z J, Shen J C, Su H, Ding Y H, Yang C F, Zhang Y Q, Ma Y. Trans Mater Heat Treat, 2010; 31(10): 63
(罗志俊, 沈俊昶, 苏 航, 丁跃华, 杨才福, 张永权, 马 跃. 材料热处理学报, 2010; 31(10): 63)
[22] Wang C F, Wang M Q, Shi J, Hui W J, Dong H. Scr Mater, 2008; 58: 492
[23] Fang H S, Liu D Y, Bai B Z, Chang K D, Gu J L, Yang Z G. Heat Treat Met, 2001; 26(10): 4
(方鸿生, 刘东雨, 白秉哲, 常开地, 顾家琳, 杨志刚. 金属热处理, 2001; 26(10): 4)
[24] Melloy G F, Summon P R, Podgursky P P. Metall Trans, 1973; 4: 2279
[25] Shikanai N, Kagawa H, Kurihara M. ISIJ Int, 1992; 32: 335
[1] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[2] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[3] ZHANG Shouqing, HU Xiaofeng, DU Yubin, JIANG Haichang, PANG Huiyong, RONG Lijian. Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform[J]. 金属学报, 2020, 56(9): 1227-1238.
[4] LU Chaoran, XU Le, SHI Chao, LIU Jinde, JIANG Weibin, WANG Maoqiu. Effect of Al on Hardenability and Microstructure of 42CrMo Bolt Steel[J]. 金属学报, 2020, 56(10): 1324-1334.
[5] Zhengguan LU,Jie WU,Lei XU,Xiaoxiao CUI,Rui YANG. Ring Rolling Forming and Properties of Ti2AlNb Special Shaped Ring Prepared by Powder Metallurgy[J]. 金属学报, 2019, 55(6): 729-740.
[6] Yongyong GONG, Shumin CHENG, Yuyi ZHONG, Yunhu ZHANG, Qijie ZHAI. The Solidification Technology of Pulsed Magneto Oscillation[J]. 金属学报, 2018, 54(5): 757-765.
[7] Xiaoyi ZHANG, Hailong SHANG, Bingyang MA, Rongbin LI, Geyang LI. Brazing of Coated Al Foil Filler to AlN Ceramic[J]. 金属学报, 2018, 54(4): 575-580.
[8] Xiaofeng HU, Haichang JIANG, Mingjiu ZHAO, Desheng YAN, Shanping LU, Lijian RONG. Microstructure and Mechanical Properties of Welded Joint of a Fe-Cr-Ni-Mo Steel with High-Strength and High-Toughness[J]. 金属学报, 2018, 54(1): 1-10.
[9] Baiyang LOU,Yuxing WANG. EFFECTS OF Mo CONTENT ON THE MICRO-STRUCTURE AND TRIBOLOGICAL PROPERTIES OF CrMoAlN FILMS[J]. 金属学报, 2016, 52(6): 727-733.
[10] Zhonghua JIANG,Pei WANG,Dianzhong LI,Yiyi LI. EFFECTS OF TEMPERING TEMPERATURE ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF GRANULAR BAINITE IN 2.25Cr-1Mo-0.25V STEEL[J]. 金属学报, 2015, 51(8): 925-934.
[11] Zhiqiao LIU,Ping YANG,Weimin MAO,Feng'e CUI. EFFECT OF 114 418 TEXTURE ON ABNORMAL GROWTH DURING SECONDARY RECRYSTALLI- ZATION IN GRAIN-ORIENTED STEEL[J]. 金属学报, 2015, 51(7): 769-776.
[12] SHEN Jun, FENG Aihan. RECENT ADVANCES ON MICROSTRUCTURAL CONTROLLING AND HOT FORMING OF Ti2AlNb-BASED ALLOYS[J]. 金属学报, 2013, 49(11): 1286-1294.
[13] . HIGH TEMPERATURE OXIDATION RESISTANCE AND MECHANICAL PROPERTIES OF NiCrAlY/Al--Al2O3 COATINGS ON AN ORTHORHOMBIC Ti2AlNb ALLOY[J]. 金属学报, 2012, 48(5): 579-586.
[14] WANG Xiaoyong, PAN Tao, WANG Hua, SU Hang,LI Xiangyang, CAO Xingzhong. INVESTIGATION OF THE TOUGHNESS OF LOW CARBON TEMPERED MARTENSITE IN THE SURFACE OF Ni-Cr-Mo-B ULTRA-HEAVY PLATE STEEL[J]. 金属学报, 2012, 48(4): 401-406.
[15] LIU Shengdan LI Chengbo DENG Yunlai ZHANG Xinming. INFLUENCE OF AGING ON THE HARDENABILITY OF 7055 ALUMINUM ALLOY THICK PLATE[J]. 金属学报, 2012, 48(3): 343-350.
No Suggested Reading articles found!