Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (7): 769-776    DOI: 10.11900/0412.1961.2014.00665
Current Issue | Archive | Adv Search |
EFFECT OF 114 418 TEXTURE ON ABNORMAL GROWTH DURING SECONDARY RECRYSTALLI- ZATION IN GRAIN-ORIENTED STEEL
Zhiqiao LIU,Ping YANG(),Weimin MAO,Feng'e CUI
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

Zhiqiao LIU,Ping YANG,Weimin MAO,Feng'e CUI. EFFECT OF 114 418 TEXTURE ON ABNORMAL GROWTH DURING SECONDARY RECRYSTALLI- ZATION IN GRAIN-ORIENTED STEEL. Acta Metall Sin, 2015, 51(7): 769-776.

Download:  HTML  PDF(7562KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To find out the reason of poor secondary recrystallization behavior in thin-gauged grain-oriented steel, EBSD technique is applied to reveal the grain growth behavior of thin-gauged steel processed by HiB steel method under high cold-rolling reduction. Nitriding treatment with different times is conducted to ensure the occurrence of secondary recrystallization in thin-gauged grain-oriented steel and to determine the effect of nitrogen content. Attention is put on the influence of 114 418 texture on the abnormal growth of Brass and Goss grains. Results show that, at initial stage of secondary recrystallization, 114 418 grains in the surface region of sheets possess obvious growth advantage than the other oriented grains. If these grains in the surface region grew to the central layer of sheet and swallowed the nucleus of secondary recrystallization, abnormal growth could not occur. In contrast, reinforcing the inhibitors at surface region of sheet by nitriding treatment will avoid the excessive growth of surface grains and therefore improve magnetic properties of steel significantly. The {114}<418> grains are adverse to the abnormal growth of Brass-oriented and scattered Goss grains in way of island grains, but their effect on the abnormal growth of Goss grains is weaker.

Key words:  114 418 texture      thin-gauged grain-oriented steel      abnormal growth      inhibitor     
Fund: Supported by National High Technology Research and Development Program of China (No.2012AA03A505)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00665     OR     https://www.ams.org.cn/EN/Y2015/V51/I7/769

Fig.1  EBSD orientation images of cold-rolled sample

(a) orientation distribution map (ND—normal direction, RD—rolling direction)

(b) {100} pole figure (TD—transverse direction)

(c) orientation distribution function (ODF), φ2=45°

Fig.2  EBSD orientation images of primary recrystallization sample

(a) orientation distribution (b) ODF, φ2=45°

Fig.3  Grain size distributions of {114}<418> and {111}<112> textures in primary recrystallization sample
Fig.4  EBSD orientation images of samples at different temperatures during secondary recrystallization annealing

(a~f) orientation distribution maps of samples at 950, 975, 1025, 1050, 1075 and 1100 ℃, respectively

(g~l) ODF, φ2=45° at 950, 975, 1025, 1050, 1075 and 1100 ℃, respectively

Fig.5  Macrostructures of secondary recrystallized grains of sample nitrided for 0 s (a), 30 s (b), 60 s (c) and 90 s (d)
Fig.6  EBSD orientation images of abnormally grown Goss grain and Brass-oriented grain of nitriding sample at 1010 ℃ during secondary recrystallization annealing

(a) abnormally grown Goss grain (yellow line indicates grain boundary misorientation <20° or >45°)

(b) {100} pole figure of Fig.6a

(c) abnormally grown Brass-oriented grain (yellow line indicates grain boundary misorientation <20° or >45°)

(d) {100} pole figure of Fig.6c

(e) {100} pole figure of all island grains in abnormally grown Goss grains

(f) {100} pole figure of all island grains in abnormally grown Brass-oriented grains

Fig.7  Difference in misorientation angle distribution between Brass-oriented grains and {114}<418> island grains in sheet interior and at sheet surface
[1] Goss N P. US Pat, 1965559, 1934
[2] Littmann M F, Heek J E. US Pat, 2599340, 1952
[3] Littmann M F. J Appl Phys, 1967; 38: 1104
[4] Park H K, Park C S, Na T W, Han C H, Hwang N M. Mater Trans JIM, 2012; 53: 658
[5] Yoshitomi Y, Ushigami Y, Harase J, Nakayama T, Masui H, Takahashi N. Mater Sci Forum, 1993; 113-115: 715
[6] Park J Y, Szpunar J A. Mater Sci Forum, 2002; 408-412: 821
[7] Hayakawa Y, Kurosawa M. Acta Mater, 2002; 50: 4527
[8] Nakashima S, Takashima K, Harase J. ISIJ Int, 1991; 31: 1013
[9] Yoshitomi Y, Masui H, Harase J, Takahashi N. Mater Trans JIM, 1995; 36: 1234
[10] Park J Y, Han K S, Woo J S, Chang S K, Rajmohan N, Szpunar J A. Acta Mater, 2002; 50: 1825
[11] Harase J, Shimizu R. J Magn Magn Mater, 2000; 215-216: 89
[12] Chang S K. Mater Sci Eng, 2007; A452-453: 93
[13] Matsuo M. ISIJ Int, 1989; 29: 809
[14] Yan M Q, Qian H, Yang P, Mao W M, Jian Q W, Jin W X. J Mater Sci Technol, 2011; 27: 1065
[15] Kumano T, Haratani T, Ushigami Y. ISIJ Int, 2003; 43: 736
[16] Shimazu T, Arai S, Sakai T, Tsubakino H. Tetsu Hagané, 2002; 88: 49 (岛津 高英, 新井 聪, 酒井 知彦, 椿野 晴繁. 铁と钢, 2002; 88: 49)
[17] Yan M Q, Qian H, Yang P, Song H J, Shao Y Y, Mao W M. Acta Metall Sin, 2012; 48: 16 (颜孟奇, 钱 浩, 杨 平, 宋惠军, 邵缓缓, 毛卫民. 金属学报, 2012; 48: 16)
[18] Gobernado P, Petrov R, Ruiz D, Leunis E, Kestens L A I. Adv Eng Mater, 2010; 12: 1077
[19] Lin P, Palumbo G, Harase J, Aust K T. Acta Mater, 1996; 44: 4677
[20] Oyarzábal M, Martínez-de-Guerenu A, Gutiérrez I. Mater Sci Eng, 2008; A485: 200
[21] Gobernado P, Petrov R H, Kestens L A I. Scr Mater, 2012; 66: 623
[22] Gobernado P, Petrov R H, Moerman J, Barbatti C, Kestens L A I. Mater Sci Forum, 2012; 702-703: 790
[23] Quadir M Z, Duggan B J. Acta Mater, 2004; 52: 4011
[24] Toge T, Muraki M, Komatsubara M, Obara T. ISIJ Int, 1998; 38: 524
[25] Nakamura S, Homma H. Mater Sci Forum, 2004; 467-470: 159
[26] Homma H, Nakamura S, Yoshinaga N. Mater Sci Forum, 2004; 467-470: 269
[27] Zhan N, Yang P, Mao W M. Acta Metall Sin, 2012; 48: 782 (张 宁, 杨 平, 毛卫民. 金属学报, 2012; 48: 782)
[28] Kumano T, Haratani T, Ushigami Y. ISIJ Int, 2003; 48: 400
[29] Rajmohan N, Szpunar J A. Scr Mater, 2001; 44: 2387
[1] CAO Fengting, WEI Jie, DONG Junhua, KE Wei, WANG Tiegang, FAN Qixiang. Corrosion Inhibition Behavior of 1-Hydroxyethylidene-1, 1-Diphosphonic Acid on 20SiMn Steel in Simulated Concrete Pore Solution Containing Cl-[J]. 金属学报, 2020, 56(6): 898-908.
[2] XU Qun-Jie. Photoelectrochemical Study of the Corrosion and Inhibition on Copper[J]. 金属学报, 2008, 44(11): 1360-1365 .
[3] . Study on Inhibition of New Type Compound Inhibitor in NaCl Solution[J]. 金属学报, 2007, 43(9): 989-993 .
[4] DU Haiyan. INHIBITION MECHANISM OF STEARAMIDE DERIVATIVE ON THE CORROSION OF CO2[J]. 金属学报, 2006, 42(5): 533-536 .
[5] ZHAO Yu;HE Zhongzhi;ZHU Jing;WENG Yuqing;WU Baorong Central Iron and Steel Research Institute; Ministry of Metallurgical Industry; Beijing. EFFECT OF Sn ON INHIBITOR INTENSITY IN HIGH INDUCTION GRAIN-ORIENTED SILICON STEELS[J]. 金属学报, 1993, 29(11): 18-21.
No Suggested Reading articles found!