Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (11): 1473-1480    DOI: 10.3724/SP.J.1037.2013.00540
Current Issue | Archive | Adv Search |
PROCESSING AND PROPERTIES OF Al3CrCuFeNi2 SINGLE CRYSTAL HIGH--ENTROPY ALLOY
ZHANG Sufang, YANG Xiao, ZHANG Yong
State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing, Beijing 100083
Cite this article: 

ZHANG Sufang, YANG Xiao, ZHANG Yong. PROCESSING AND PROPERTIES OF Al3CrCuFeNi2 SINGLE CRYSTAL HIGH--ENTROPY ALLOY. Acta Metall Sin, 2013, 49(11): 1473-1480.

Download:  PDF(5837KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The high-entropy alloy is a class of new metal material,its dominant element is generally more than three, and its mixing entropy is high and easy to form a solid solution structure. A large number of investigations show that high-entropy alloy possess excellent high temperature phase stability and softening resistance, which is superior to traditional superalloy. The Al3CrCuFeNi2 high-entropy alloy is studied by using once Bridgman solidification at different draw rates (10, 30 and 150 μm/s) and twice Bridgman solidification at 10 μm/s draw rate, the corresponding microstructure are analyzed. The EBSD technique is applied to detect the alloy growth orientation and grain boundary misorientation angle of alloys by once and twice Bridgman solidification at 10 μm/s draw rate. The room temperature tensile mechanical properties of Al3CrCuFeNi2 high-entropy alloy by twice Bridgman solidification at 10 μm/s draw rate and suction casting are studied. The results show that the primary spacing of dendritic of Al3CrCuFeNi2 high-entropy alloy by Bridgman solidification at 10 μm/s draw rate is larger than other draw rates and suction casting, while the growth orientation angle of dendrite dry is smaller than others. The orientation is close to the <001> direction after twice Bridgman solidification at 10 μm/s draw rate, and most of grain boundary misorientation angle are less than 5°. Compared with suction casting samples, yield strength, tensile strength and elongation of Al3CrCuFeNi2 high-entropy alloy by using twice Bridgman solidification increased by 34.6%, 10.2% and 40%.

Key words:  Al3CrCuFeNi2 high-entropy alloy      EBSD      orientation analysis, mechanical property     
Received:  02 September 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00540     OR     https://www.ams.org.cn/EN/Y2013/V49/I11/1473

[1] Yeh J W, Chen S K, Lin S J, Gan J Y, Chen T S, Shun T T, Tsau C H, Chang S Y.Adv Eng Mater, 2004; 6: 299

[2] Yeh J W.  Ann Chim Sci Mater, 2006; 31: 633
[3] Zhang Y.  Metallic Glasses and High Entropy Alloys. Beijing: Science Press, 2010: 67
(张勇. 非晶和高熵合金. 北京: 科学出版社, 2010: 67)
[4] Yang X, Zhang Y.  Mater Chem Phys, 2012; 233: 132
[5] Lin C M, Tsai H L.  Intermetallics, 2011; 19: 288
[6] Singh S, Wanderka N, Murty B S, Glatzel U, Ban J.   Acta Mater, 2011; 59: 182
[7] Huang C, Zhang Y Z, Shen J Y, Vilar R.  Surf Coat Technol, 2011; 206: 1389
[8] Kuznetsov A V, Shaysultanov D G, Stepanov N D, Salishchev G A, Senkov O N.Mater Sci Eng, 2012; A533: 107
[9] Hemphill M A, Yuan T, Wang G Y, Yeh J W, Tsai C W, Chuang A, Liaw P K.  Acta Mater,2012; 60: 5723
[10] Tsai M H, Yeh J W, Gan J Y.  Thin Solid Films, 2008; 516: 5527
[11] Zhou Y J, Zhang Y, Wang F J, Chen G L.  Appl Phys Lett, 2008; 92: 241917
[12] Zhang Y, Zuo T T, Cheng Y Q, Liaw P K.  Sci Rep, 2013; DOI: 10.1038/srep01455
[13] Senkov O N, Wilks G B, Scott J M, Miracle D B.  Intermetallics, 2011; 19: 698
[14] Chen R Z.  J Mater Eng, 1995; (8): 3
(陈荣章. 材料工程, 1995; (8): 3)
[15] Zhang W G, Liu L, Zhao X B, Qu M, Yu Z H, Fu H Z.  Foundry, 2009; 58: 1
(张卫国, 刘林, 赵新宝, 屈敏, 余竹焕, 傅恒志. 铸造, 2009; 58: 1)
[16] Ding X F, Lin J P, Zhang L Q, Su Y Q, Chen G L.  Acta Mater, 2012; 60: 498
[17] Liu J, Li L, Zeng B, Peng G W.  J Hunan Ins Eng, 2005; 15: 49
(刘健, 李理, 曾斌, 彭广威. 湖南工程学院学报, 2005; 15: 49)
[18] Zhang Y.  Mater Sci Forum, 2010; 654--656: 1058
[19] Tung C C, Yeh W W, Shun T T, Chen S K, Huang Y S, Chen C H.  Mater Lett, 2007; 61: 1
[20] Ma S G, Zhang S F, Zhang Y, Gao M C, Liaw P K.  JOM, 2013; DOI:10.1007/s11837-013-0733-x
[21] Guo S, Ng C, Lu J, Liu C T.  J Appl Phys, 2011; 109: 103505
[22] Li S M, Du W, Zhang J, Li J S, Liu L, Fu H Z.  Acta Metall Sin, 2002; 38: 1195
(李双明, 杜炜, 张军, 李金山, 刘林, 傅恒志. 金属学报, 2002; 38: 1195)
[23] Li X F, Guo X P.  Acta Metall Sin, 2013; 49: 853
(李小飞, 郭喜平. 金属学报, 2013; 49: 853)
[24] Fu H Z, He G, Li J G.  Acta Metall Sin, 1997; 33: 1233
(傅恒志, 何国, 李建国. 金属学报, 1997; 33: 1233)
[25] Li X Y, Li P, Zhou Y Z, Jin T, Zhang Z F.  Acta Metall Sin, 2013; 49: 351
(李小阳, 李鹏, 周亦胃, 金涛, 张哲峰. 金属学报, 2013; 49: 351)
[26] Chen M, Liu Y, Li Y X, Chen X.  Acta Metall Sin, 2007; 43: 1020
(陈敏, 刘源, 李言祥, 陈祥. 金属学报, 2007; 43: 1020)
[27] Wang F J, Zhang Y, Chen G L.  J Eng Mater Technol, 2009; 131: 1
[1] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[2] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[3] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[4] WU Xiang,ZUO Xiurong,ZHAO Weiwei,WANG Zhongyang. Mechanism of TiN Fracture During the Tensile Process of NM500 Wear-Resistant Steel[J]. 金属学报, 2020, 56(2): 129-136.
[5] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[6] Tingguang LIU, Shuang XIA, Qin BAI, Bangxin ZHOU. Morphological Characteristics and Size Distributions of Three-Dimensional Grains and Grain Boundaries in 316L Stainless Steel[J]. 金属学报, 2018, 54(6): 868-876.
[7] Siqian BAO, Bingbing LIU, Gang ZHAO, Yang XU, Shanshan KE, Xiao HU, Lei LIU. Three-Dimensional Morphologies of Abnormally Grown Goss Oriented Grains in Hi-B Steel During Secondary Recrystallization Annealing[J]. 金属学报, 2018, 54(6): 877-885.
[8] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[9] Yang XU,Siqian BAO,Gang ZHAO,Xiangbin HUANG,Rusheng HUANG,Bingbing LIU,Nana SONG. Three-Dimensional Morphologies of Different Oriented Grains in Hi-B Steel Formed During Early Stage of Secondary Recrystallization Annealing[J]. 金属学报, 2017, 53(5): 539-548.
[10] Lina WANG,Ping YANG,Weimin MAO. ANALYSIS OF MARTENSITIC TRANSFORMATIONDURING TENSION OF HIGH MANGANESETRIP STEEL AT HIGH STRAIN RATES[J]. 金属学报, 2016, 52(9): 1045-1052.
[11] Yue HE,Song XIANG,Wei SHI,Jianmin LIU,Yu LIANG,Chaoyi CHEN. EFFECT OF MICROSTRUCTURAL EVOLUTION ON THE PITTING CORROSION OF COLD DRAWING PEARLITIC STEELS[J]. 金属学报, 2016, 52(12): 1536-1544.
[12] Gongtao LIU,Ping YANG,Weimin MAO. EFFECT OF FINAL ANNEALING ATMOSPHERE ON SECONDARY RECRYSTALLIZATION BEHAVIOR IN THIN GAUGE MEDIUM TEMPERATURE GRAIN ORIENTED SILICON STEEL[J]. 金属学报, 2016, 52(1): 25-32.
[13] Bingshu WANG,Liping DENG,Adrien CHAPUIS,Ning GUO,Qiang LI. STUDY OF TWINNING BEHAVIOR OF AZ31 Mg ALLOY DURING PLANE STRAIN COMPRESSION[J]. 金属学报, 2015, 51(12): 1441-1448.
[14] DAI Qilei, LIANG Zhifang, WU Jianjun, MENG Lichun, SHI Qingyu. MICROSTRUCTURE CHANGE AND ENERGY RELEASE OF FRICTION STIR WELDED Al-Mg-Si ALLOY DURING DSC TEST[J]. 金属学报, 2014, 50(5): 587-593.
[15] HUANG Hongtao, Godfrey Andrew, LIU Wei, FU Baoqin,LIU Qing. DEFORMATION BEHAVIOR OF AZ31 MAGNESIUM ALLOY DURING MULTIAXIAL COMPRESSION BY EBSD TRACKING[J]. 金属学报, 2013, 49(8): 932-938.
No Suggested Reading articles found!